We present a morphological analysis of distant field galaxies using the deep ACS images from the public parallel NICMOS observations of the Hubble Ultra Deep Field obtained in the F435W (B), F606W (V), F775W (i) and F850LP (z) filters. We morphologically segregate galaxies using a combination of visual classification and objective machine based selection. We use the Asymmetry (A) and Central Concentration (C) parameters to characterize galaxies up to z_AB<25mag. We take advantage of the multicolor dataset and estimate redshifts for our sample using the Bayesian photometric redshift (BPZ) which enables us to investigate the evolution of their morphological demographics with redshift. Using a template fitting model and a maximum likelihood approach, we compute the star-formation rate (SFR) for galaxies up to z~1.3 and its contributions from different morphological types. We report that spirals are the main providers to the total SFR. The E/S0s contribution flattens out at z~1 while the Irr/Pec populations continuously rise to match the spirals contribution at z~1.0. We use the i-z and V-i color-magnitude diagrams to constrain the galaxies formation histories and find that E/S0s show both a population of luminous red galaxies in place at z~1.2 and a bluer and fainter population resembling those of Irr/Pec at similar redshifts.