Do you want to publish a course? Click here

Isolated, Massive Supergiants near the Galactic Center

96   0   0.0 ( 0 )
 Added by Michael P. Muno
 Publication date 2005
  fields Physics
and research's language is English
 Authors M. P. Muno




Ask ChatGPT about the research

We have carried out a pilot project to assess the feasibility of using radio, infrared, and X-ray emission to identify young, massive stars located between 1 and 25 pc from the Galactic center. We first compared catalogs compiled from the Very Large Array, the Chandra X-ray Observatory, and 2MASS. We identified two massive, young stars: the previously-identified star that is associated with the radio HII region H2, and a newly-identified star that we refer to as CXOGC J174516.1-290315. The infrared spectra of both stars exhibit very strong Br-gamma and He I lines, and resemble those of massive supergiants that have evolved off of the main sequence, but not yet reached the Wolf-Rayet phase. We estimate that each star has a bolometric luminosity >10^6 L_sun. The detection of these two sources in X-rays is surprising, because stars at similar evolutionary states are not uniformly bright X-ray sources. Therefore, we suggest that both stars are in binary systems that contain either OB stars whose winds collide with those of the luminous supergiants, or compact objects that are accreting from the winds of the supergiants. We also identify X-ray emission from a nitrogen-type Wolf-Rayet star and place upper limits on the X-ray luminosities of three more evolved, massive stars that previously have been identified between 1 and 25 pc from Sgr A*. Finally, we briefly discuss the implications that future searches for young stars will have for our understanding of the recent history of star formation near the Galactic center. (abridged)



rate research

Read More

The presence of massive stars (MSs) in the region close to the Galactic Center (GC) poses several questions about their origin. The harsh environment of the GC favors specific formation scenarios, each of which should imprint characteristic kinematic features on the MSs. We present a 2D kinematic analysis of MSs in a GC region surrounding Sgr A* based on high-precision proper motions obtained with the Hubble Space Telescope. Thanks to a careful data reduction, well-measured bright stars in our proper-motion catalogs have errors better than 0.5 mas yr$^{-1}$. We discuss the absolute motion of the MSs in the field and their motion relative to Sgr A*, the Arches and the Quintuplet. For the majority of the MSs, we rule out any distance further than 3-4 kpc from Sgr A* using only kinematic arguments. If their membership to the GC is confirmed, most of the isolated MSs are likely not associated with either the Arches or Quintuplet clusters or Sgr A*. Only a few MSs have proper motions suggesting they are likely members of the Arches cluster, in agreement with previous spectroscopic results. Line-of-sight radial velocities and distances are required to shed further light on the origin of most of these massive objects. We also present an analysis of other fast-moving objects in the GC region, finding no clear excess of high-velocity escaping stars. We make our astro-photometric catalogs publicly available.
236 - Sarah Kendrew 2013
We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone near Sgr C. Located on the outskirts of the massive evolved HII region associated with Sgr C, the area is characterized by an Extended Green Object measuring ~10 in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C HII region, with detections of two protostellar cores and several knots of H2 and Brackett gamma emission alongside a previously detected compact radio source. We calculate the cores joint mass to be ~10^3 Msun, with column densities of 1-2 x 10^24 cm-2. We show the host molecular cloud to hold ~10^5 Msun of gas and dust with temperatures and column densities favourable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the Eastern CMZ.
Recently, more than 100 Wolf-Rayet and OB stars were identified in the Galactic center. About a third of these sources are not spatially associated with any of the known star clusters in this region. We probe the distribution of drifted sources in numerical models of the massive clusters in the Galactic center and compare it to the observed distribution of isolated massive sources in this region. We find that stars as massive as 100 Msun drift away from the center of each cluster by up to ~60 pc using the cluster models. Our best model reproduces ~60% of the known isolated massive stars out to 80 pc from the center of the Arches cluster. This number increases to 70%-80% when we only consider the region of ~20 pc from the Arches cluster.
Near-infrared polarimetry of point sources reveals the presence of a toroidal magnetic field in the central 20 x 20 region of our Galaxy. Comparing the Stokes parameters between high extinction stars and relatively low extinction ones, we have obtained a polarization originating from magnetically aligned dust grains at the central region of our Galaxy of at most 1-2 kpc. The derived direction of the magnetic field is in good agreement with that obtained from far-infrared/submillimeter observations, which detect polarized thermal emission from dust in the molecular clouds at the Galactic center. Our results show that by subtracting foreground components, near-infrared polarimetry allows investigation of the magnetic field structure at the Galactic center. The distribution of the position angles shows a peak at around 20deg, nearly parallel to the direction of the Galactic plane, suggesting a toroidal magnetic configuration.
113 - F. Martins 2006
We report on the spectroscopic monitoring of GCIRS16SW, an Ofpe/WN9 star and LBV candidate in the central parsec of the Galaxy. SINFONI observations show strong daily spectroscopic changes in the K band. Radial velocities are derived from the HeI 2.112 um line complex and vary regularly with a period of 19.45 days, indicating that the star is most likely an eclipsing binary. Under various assumptions, we are able to derive a mass of ~ 50 Msun for each component.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا