No Arabic abstract
Microquasars occasionally exhibit massive jet ejections which are distinct from the continuous or quasi-continuous weak jet ejections. Because those massive jet ejections are rare and short events, they have hardly been observed in X-ray so far. In this paper, the first X-ray observation of a massive jet ejection from the microquasar SS 433 with the Rossi X-ray Timing Explorer (RXTE) is reported. SS 433 undergoing a massive ejection event shows a variety of new phenomena including a QPO-like feature near 0.1 Hz, rapid time variability, and shot-like activities. The shot-like activity may be caused by the formation of a small plasma bullet. A massive jet may be consist of thousands of those plasma bullets ejected from the binary system. The size, mass, internal energy, and kinetic energy of the bullets and the massive jet are estimated.
We present the X-ray images of all the available Chandra observations of the galactic jet source SS 433. We have studied the morphology of the X-ray images and inspected the evolution of the arcsec X-ray jets, recently found to be manifestations of in situ reheating of the relativistic gas downstream in the jets. The Chandra images reveal that the arcsec X-ray jets are not steady long term structures; the structure varies, indicating that the reheating processes have no preference for a particular precession phase or distance from the binary core. Three observations made within about five days in May 2001, and a 60 ks observation made in July 2003 show that the variability of the jets can be very rapid, from timescales of days to (possibly) hours. The three May 2001 images show two resolved knots in the east jet getting brighter one after the other, suggesting that a common phenomenon might be at the origin of the sequential reheatings of the knots. We discuss possible scenarios and propose a model to interpret these brightenings in terms of a propagating shock wave, revealing a second, faster outflow in the jet.
Microquasars, the local siblings of extragalactic quasars, are binary systems comprising a compact object and a companion star. By accreting matter from their companions, microquasars launch powerful winds and jets, influencing the interstellar environment around them. Steady gamma-ray emission is expected to rise from their central objects, or from interactions between their outflows and the surrounding medium. The latter prediction was recently confirmed with the detection of SS 433 at high (TeV) energies. In this report, we analyze more than ten years of GeV gamma-ray data from the Fermi Gamma-ray Space Telescope on this source. Detailed scrutiny of the data reveal emission in the SS 433 vicinity, co-spatial with a gas enhancement, and hints for emission possibly associated with a terminal lobe of one of the jets. Both gamma-ray excesses are relatively far from the central binary, and the former shows evidence for a periodic variation at the precessional period of SS 433, linking it with the microquasar. This result challenges obvious interpretations and is unexpected from any previously published theoretical models. It provides us with a chance to unveil the particle transport from SS 433 and to probe the structure of the local magnetic field in its vicinity.
We fit Chandra HETGS data obtained for the unusual X-ray binary SS 433. While line strengths and continuum levels hardly change, the jet Doppler shifts show aperiodic variations that probably result from shocks in interactions with the local environment. The X-ray and optical emission line regions are found to be related but not coincident as the optical line emission persists for days while the X-ray emission lines fade in less than 5000 s. The X-ray spectrum of the blue-shifted jet shows over two dozen emission lines from plasma at a variety of temperatures. The emission measure distribution derived from the spectrum can be used to test jet cooling models.
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compatible with the precession period of the binary system, of about 160 days. The location of this variable component is not compatible with the location of SS 433 jets. To explain the observed phenomenology, a scenario based on the illumination of dense gas clouds by relativistic protons accelerated at the interface of the accretion disk envelope has been proposed. Energetic arguments strongly constrain this scenario, however, as it requires an unknown mechanism capable to periodically channel a large fraction of SS 433s kinetic energy towards an emitter located 36 parsec away from the central binary system.
We study the optical variability of the peculiar Galactic source SS 433 using the observations made with the Russian Turkish 1.5-m telescope (RTT150). A simple technique which allows to obtain high-quality photometric measurements with 0.3-1 s time resolution using ordinary CCD is described in detail. Using the test observations of nonvariable stars, we show that the atmospheric turbulence introduces no significant distortions into the measured light curves. Therefore, the data obtained in this way are well suited for studying the aperiodic variability of various objects. The large amount of SS 433 optical light curve measurements obtained in this way allowed us to obtain the power spectra of its flux variability with a record sensitivity up to frequencies of ~0.5 Hz and to detect its break at frequency =~2.4e-3 Hz. We suggest that this break in the power spectrum results from the smoothing of the optical flux variability due to a finite size of the emitting region. Based on our measurement of the break frequency in the power spectrum, we estimated the size of the accretion-disk photosphere as 2e12 cm. We show that the amplitude of the variability in SS 433 decreases sharply during accretion-disk eclipses, but it does not disappear completely. This suggests that the size of the variable optical emission source is comparable to that of the normal star whose size is therefore R_O approx 2e12 cm approx 30 R_sun. The decrease in flux variability amplitude during eclipses suggests the presence of a nonvariable optical emission component with a magnitude m_R=~13.2.