We show that fluid stationary models are able to reproduce the observed, negative vertical gradient of the rotation velocity of the extra-planar gas in spiral galaxies. We have constructed models based on the simple condition that the pressure of the medium does not depend on density alone (baroclinic instead of barotropic solutions: isodensity and isothermal surfaces do not coincide). As an illustration, we have successfully applied our method to reproduce the observed velocity gradient of the lagging gaseous halo of NGC 891. The fluid stationary models discussed here can describe a hot homogeneous medium as well as a gas made of discrete, cold HI clouds with an isotropic velocity dispersion distribution. Although the method presented here generates a density and velocity field consistent with observational constraints, the stability of these configurations remains an open question.