Do you want to publish a course? Click here

Gas Metallicity in the Narrow-Line Regions of High-Redshift Active Galactic Nuclei

60   0   0.0 ( 0 )
 Added by Tohru Nagao
 Publication date 2005
  fields Physics
and research's language is English
 Authors Tohru Nagao




Ask ChatGPT about the research

We analyze optical (UV rest-frame) spectra of X-ray selected narrow-line QSOs at redshift 1.5 < z < 3.7 found in the Chandra Deep Field South and of narrow-line radio galaxies at redshift 1.2 < z < 3.8 to investigate the gas metallicity of the narrow-line regions and their evolution in this redshift range. Such spectra are also compared with UV spectra of local Seyfert 2 galaxies. The observational data are inconsistent with the predictions of shock models, suggesting that the narrow-line regions are mainly photoionized. The photoionization models with dust grains predict line flux ratios which are also in disagreement with most of the observed values, suggesting that the high-ionization part of the narrow-line regions (which is sampled by the available spectra) is dust-free. The photoionization dust-free models provide two possible scenarios which are consistent with the observed data: low-density gas clouds (n < 10^3 cm^-3) with a sub-solar metallicity (0.2 < Z/Z_sun < 1.0), or high-density gas clouds (n ~ 10^5 cm^-3) with a wide range of gas metallicity (0.2 < Z/Z_sun < 5.0). Regardless of the specific interpretation, the observational data do not show any evidence for a significant evolution of the gas metallicity in the narrow-line regions within the redshift range 1.2 < z < 3.8. Instead, we find a trend for more luminous active galactic nuclei to have more metal-rich gas clouds (luminosity-metallicity relation), which is in agreement with the same finding in the studies of the broad-line regions. The lack of evolution for the gas metallicity of the narrow-line regions implies that the major epoch of star formation in the host galaxies of these active galactic nuclei is at z > 4.



rate research

Read More

52 - H. Netzer 2004
We present new near infrared spectroscopic measurements for 29 luminous high-z quasars and use the data to discuss the size and other properties of the NLRs in those sources. The high resolution spectra have been used to carefully model the Fe II blends and to provide reliable [O III], Fe II and Hb measurements. We find that about 2/3 of all high luminosity sources show strong [O III] lines while the remaining objects show no or very weak such line. While weak [O III] emitters are also found among lower luminosity AGN, we argue that the implications for very high luminosity objects are different. In particular, we suggest that the averaging of these two populations in other works gave rise to claims of a Baldwin relationship in [O III] which is not confirmed by our data. We also argue that earlier proposed relations of the type R_NLR propto L_[O III]^{1/2}, where R_NLR is the NLR radius, are theoretically sound yet they must break down for R_NLR exceeding a few kpc. This suggests that the NLR properties in luminous sources are different from those observed in nearby AGN. In particular, we suggest that some sources lost their very large, dynamically unbound NLR while others are in a phase of violent star-forming events that produce a large quantity of high density gas in the central kpc. This gas is ionized and excited by the central radiation source and its spectroscopic properties may be different from those observed in nearby, lower luminosity NLRs. We also discuss the dependence of EW(Hb) and Fe II/Hb on L, M_BH, and accretion rate for a large sample of AGNs. The strongest dependence of the two quantities is on the accretion rate and the Fe II/Hb correlation is probably due to the EW(Hb) dependence on accretion rate. We show the most extreme values measured so far of Fe II/Hb and address its correlation with EW([O III]).
64 - Melissa S. Rice 2005
We have analyzed HST spectroscopy of 24 nearby AGNs to investigate spatially-resolved gas kinematics in the Narrow Line Region (NLR). These observations effectively isolate the nuclear line profiles on less than 100 pc scales and are used to investigate the origin of the substantial scatter between the widths of strong NLR lines and the stellar velocity dispersion sigma_* of the host galaxy, a quantity which relates with substantially less scatter to the mass of the central, supermassive black hole, and more generally characterize variations in the NLR velocity field with radius. We find that line widths measured with STIS at a range of spatial scales systematically underestimate both sigma_* and the line width measured from ground-based observations, although they do have comparably large scatter to the relation between ground-based NLR line width and sigma_*. There are no obvious trends in the residuals when compared with a range of host galaxy and nuclear properties. The widths and asymmetries of [OIII] 5007 and [SII] 6716, 6731 as a function of radius exhibit a wide range of behavior. Some of the most common phenomena are substantial width increases from the STIS to the large-scale, ground-based aperture and almost no change in line profile between the unresolved nuclear spectrum and ground-based measurements. We identify asymmetries in a surprisingly large fraction of low-ionization [SII] line profiles and several examples of substantial red asymmetries in both [OIII] and [SII]. These results underscore the complexity of the circumnuclear material that constitutes the NLR and suggest that the scatter in the NLR width and sigma_* correlation can not be substantially reduced with a simple set of empirical relations.
129 - J.-M. Wang , J.-Q. Ge , C. Hu 2011
It has been suggested that the high metallicity generally observed in active galactic nuclei (AGNs) and quasars originates from ongoing star formation in the self-gravitating part of accretion disks around the supermassive black holes. We designate this region as the star forming (SF) disk, in which metals are produced from supernova explosions (SNexp) while at the same time inflows are driven by SNexp-excited turbulent viscosity to accrete onto the SMBHs. In this paper, an equation of metallicity governed by SNexp and radial advection is established to describe the metal distribution and evolution in the SF disk. We find that the metal abundance is enriched at different rates at different positions in the disk, and that a metallicity gradient is set up that evolves for steady-state AGNs. Metallicity as an integrated physical parameter can be used as a probe of the SF disk age during one episode of SMBH activity. In the SF disk, evaporation of molecular clouds heated by SNexp blast waves unavoidably forms hot gas. This heating is eventually balanced by the cooling of the hot gas, but we show that the hot gas will escape from the SF disk before being cooled, and diffuse into the BLRs forming with a typical rate of $sim 1sunmyr$. The diffusion of hot gas from a SF disk depends on ongoing star formation, leading to the metallicity gradients in BLR observed in AGNs. We discuss this and other observable consequences of this scenario.
67 - Tohru Nagao 2006
In this contribution we report our recent investigation of the gas metallicity in active galactic nuclei and its dependence on luminosity and redshift. We compile large spectroscopic datasets of broad-line and narrow-line AGNs, and compare them with the results of our photoionization models. Through the analysis of both the broad and the narrow emission-line regions, we find that: (1) for a given luminosity, there is no redshift dependence of the gas metallicity; (2) for a given redshift, there is a significant correlation between gas metallicity and luminosity; (3) the luminosity-metallicity relation does no show any evolution in the redshift range 2 < z < 4.
201 - O. Shemmer 2004
We present new near infrared spectroscopic measurements of the H_beta region for a sample of 29 luminous high redshift quasars. We have measured the width of H_beta in those sources, and added archival H_beta width measurements, to create a sample of 92 active galactic nuclei (AGNs) for which H_beta width and rest-frame UV measurements of N V lambda 1240 and C IV lambda 1549 emission-lines are available. Our sample spans six orders of magnitude in luminosity and includes 31 radio-loud AGNs. It also includes 10 narrow-line Seyfert 1 galaxies and one broad absorption-line quasar. We find that metallicity, indicated by the N V/C IV line ratio, is primarily correlated with accretion rate, which is a function of luminosity and H_beta line-width. This may imply an intimate relation between starburst, responsible for the metal enrichment of the nuclear gas, and AGN fueling, represented by the accretion rate. The correlation of metallicity with luminosity, or black hole (BH) mass, is weaker in contrast with recent results which were based on measurements of the width of C IV. We argue that using C IV as a proxy to H_beta in estimating M_BH might be problematic and lead to spurious BH mass and accretion rate estimates in individual sources. We discuss the potential implications of our new result in the framework of the starburst-AGN connection and theories of BH growth.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا