Do you want to publish a course? Click here

Crushing of interstellar gas clouds in supernova remnants. I. The role of thermal conduction and radiative losses

99   0   0.0 ( 0 )
 Added by Salvatore Orlando
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We model the hydrodynamic interaction of a shock wave of an evolved supernova remnant with a small interstellar gas cloud like the ones observed in the Cygnus loop and in the Vela SNR. We investigate the interplay between radiative cooling and thermal conduction during cloud evolution and their effect on the mass and energy exchange between the cloud and the surrounding medium. Through the study of two cases characterized by different Mach numbers of the primary shock (M = 30 and 50, corresponding to a post-shock temperature $Tapprox 1.7times 10^6$ K and $approx 4.7times 10^6$ K, respectively), we explore two very different physical regimes: for M = 30, the radiative losses dominate the evolution of the shocked cloud which fragments into cold, dense, and compact filaments surrounded by a hot corona which is ablated by the thermal conduction; instead, for M = 50, the thermal conduction dominates the evolution of the shocked cloud, which evaporates in a few dynamical time-scales. In both cases we find that the thermal conduction is very effective in suppressing the hydrodynamic instabilities that would develop at the cloud boundaries.



rate research

Read More

AIMS. We study and discuss the time-dependent X-ray emission predicted by hydrodynamic modeling of the interaction of a SNR shock wave with an interstellar gas cloud. The scope includes: 1) to study the correspondence between modeled and X-ray emitting structures, 2) to explore two different physical regimes in which either thermal conduction or radiative cooling plays a dominant role, and 3) to investigate the effects of the physical processes at work on the emission of the shocked cloud in the two different regimes. METHODS. We use a detailed hydrodynamic model, including thermal conduction and radiation, and explore two cases characterized by different Mach numbers of the primary shock: M = 30 in which the cloud dynamics is dominated by radiative cooling and M = 50 dominated by thermal conduction. From the simulations, we synthesize the expected X-ray emission, using available spectral codes. RESULTS. The morphology of the X-ray emitting structures is significantly different from that of the flow structures originating from the shock-cloud interaction. The hydrodynamic instabilities are never clearly visible in the X-ray band. Shocked clouds are preferentially visible during the early phases of their evolution. Thermal conduction and radiative cooling lead to two different phases of the shocked cloud: a cold cooling dominated core emitting at low energies and a hot thermally conducting corona emitting in the X-ray band. The thermal conduction makes the X-ray image of the cloud smaller, more diffuse, and shorter-lived than that observed when thermal conduction is neglected.
Anisotropic thermal conduction plays an important role in various astrophysical systems. One of the most stringent tests of thermal conduction can be found in supernova remnants. In this paper we study anisotropic thermal conduction and examine the physical nature of the flux of thermal conduction in the classical and saturated limits. We also present a temporally second-order accurate implicit-explicit scheme for the time-update of thermal conduction terms within a numerical MHD scheme. Several simulations of supernova remnants are presented for a range of ISM parameters. The role of thermal conduction in such remnants has been studied. We find that thermal conduction produces cooler temperatures and higher densities in the hot gas bubbles that form in the remnants. The effect of thermal conduction in changing the thermal characteristics of the hot gas bubble increases as the remnant propagates through denser ISMs. Remnants evolving in denser ISMs are shown to make a faster transition to a centre-bright x-ray morphology, with the trend emerging earlier in hard x-rays than in the soft x-rays.
I outline the dynamical evolution of the shell remnants of supernovae (SNRs), from initial interaction of supernova ejecta with circumstellar material (CSM) through to the final dissolution of the remnant into the interstellar medium (ISM). Supernova ejecta drive a blast wave through any CSM from the progenitor system; as material is swept up, a reverse shock forms in the ejecta, reheating them. This ejecta-driven phase lasts until ten or more times the ejected mass is swept up, and the remnant approaches the Sedov or self-similar evolutionary phase. The evolution up to this time is approximately adiabatic. Eventually, as the blast wave slows, the remnant age approaches the cooling time for immediate post-shock gas, and the shock becomes radiative and highly compressive. Eventually the shock speed drops below the local ISM sound speed and the remnant dissipates. I then review the various processes by which remnants radiate. At early times, during the adiabatic phases, thermal X-rays and nonthermal radio, X-ray, and gamma-ray emission dominate, while optical emission is faint and confined to a few strong lines of hydrogen and perhaps helium. Once the shock is radiative, prominent optical and infrared emission is produced. Young remnants are profoundly affected by interaction with often anisotropic CSM, while even mature remnants can still show evidence of ejecta.
The crisis of the standard cooling flow model brought about by Chandra and XMM-Newton observations of galaxy clusters, has led to the development of several models which explore different heating processes in order to assess if they can quench the cooling flow. Among the most appealing mechanisms are thermal conduction and heating through buoyant gas deposited in the ICM by AGNs. We combine Virgo/M87 observations of three satellites (Chandra, XMM-Newton and Beppo-SAX) to inspect the dynamics of the ICM in the center of the cluster. Using the spectral deprojection technique, we derive the physical quantities describing the ICM and determine the extra-heating needed to balance the cooling flow assuming that thermal conduction operates at a fixed fraction of the Spitzer value. We assume that the extra-heating is due to buoyant gas and we fit the data using the model developed by Ruszkowski and Begelman (2002). We derive a scale radius for the model of $sim 5$ kpc, which is comparable with the M87 AGN jet extension, and a required luminosity of the AGN of a $few times 10^{42}$ erg s$^{-1}$, which is comparable to the observed AGN luminosity. We discuss a scenario where the buoyant bubbles are filled of relativistic particles and magnetic field responsible for the radio emission in M87. The AGN is supposed to be intermittent and to inject populations of buoyant bubbles through a succession of outbursts. We also study the X-ray cool component detected in the radio lobes and suggest that it is structured in blobs which are tied to the radio buoyant bubbles.
The role of anisotropic thermal diffusivity on tearing mode stability is analysed in general toroidal geometry. A dispersion relation linking the growth rate to the tearing mode stability parameter, Delta, is derived. By using a resistive MHD code, modified to include such thermal transport, to calculate tearing mode growth rates, the dispersion relation is employed to determine Delta in situations with finite plasma pressure that are stabilised by favourable average curvature in a simple resistive MHD model. We also demonstrate that the same code can also be used to calculate the basis-functions [C J Ham, et al, Plasma Phys. Control. Fusion 54 (2012) 105014] needed to construct Delta.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا