Do you want to publish a course? Click here

Spectro-photometric study of the GRB 030329 host galaxy

66   0   0.0 ( 0 )
 Added by Javier Gorosabel
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study optical/near-infrared(NIR) broad band photometry and optical spectroscopic observations of the GRB 030329 host galaxy are presented. The Spectral Energy Distribution (SED) of the host is consistent with a starburst galaxy template with a dominant stellar population age of ~150 Myr and an extinction Av ~0.6. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy. Two independent diagnostics, based on the restframe UV continuum and the [OII] line flux, provide a consistent unextincted star formation rate of SFR ~0.6 Mo yr^-1. The low absolute magnitude of the host (M_B ~ -16.5) implies a high specific star formation rate value, SSFR = ~34 Mo yr^-1 (L/L*)^-1.



rate research

Read More

No optical afterglow was found for the dark burst GRB 981226 and hence no absorption redshift has been obtained. We here use ground-based and space imaging observations to analyse the spectral energy distribution (SED) of the host galaxy. By comparison with synthetic template spectra we determine the photometric redshift of the GRB 981226 host to be z_phot = 1.11+/-0.06 (68% confidence level). While the age-metallicity degeneracy for the host SED complicates the determination of accurate ages, metallicity, and extinction, the photometric redshift is robust. The inferred z_phot value is also robust compared to a Bayesian redshift estimator which gives z_phot=0.94+/-0.13. The characteristics for this host are similar to other GRB hosts previously examined. Available low resolution spectra show no emission lines at the expected wavelengths. The photometric redshift estimate indicates an isotropic energy release consistent with the Amati relation for this GRB which had a spectrum characteristic of an X-ray flash.
We present broad band photometry and spectroscopic observations of the host galaxy of GRB 030329. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy (Z~0.004). The spectral energy distribution (SED) constructed with the photometric points has been fitted using synthetic and observational templates. The best SED fit is obtained with a starburst template with an age of ~150 Myr and an extinction Av~0.6. We find that the GRB 030329 host galaxy is a subluminous galaxy (L~0.016 L*) with a stellar mass of >~10^8 Mo. Three independent diagnostics, based on the restframe UV continuum, the [OII], and the Balmer emission lines, provide a consistent unextincted star formation rate of ~0.6 Mo yr^-1, implying a high unextincted specific star formation rate (~34 Mo yr^-1 (L/L*)^-1). We estimate that the unextincted specific star formation rate of the GRB 030329 host is higher than ~93.5% of the galaxies at a similar redshift.
GRB 020903 is a long-duration gamma ray burst (LGRB) with a host galaxy close enough and extended enough for spatially-resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially-resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles we were able to obtain optical spectra (3600-9000{AA}) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable sub-solar metallicities. We conclude that, in agreement with past spatially-resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.
We present deep images of the field of gamma-ray burst (GRB) 990123 obtained in a broad-band UV/visible bandpass with the Hubble Space Telescope, and deep near-infrared images obtained with the Keck-I 10-m telescope. Both the HST and Keck images show that the optical transient (OT) is clearly offset by 0.6 arcsec from an extended object, presumably the host galaxy. This galaxy is the most likely source of the metallic-line absorption at z = 1.6004 seen in the spectrum of the OT. With magnitudes V_{C} ~ 24.6 +/- 0.2 and K = 21.65 +/- 0.30 mag this corresponds to an L ~ 0.7 L_* galaxy, assuming that it is located at z = 1.6. The estimated unobscured star formation rate is SFR ~ 6 M_sun/yr, which is not unusually high for normal galaxies at comparable redshifts. The strength of the observed metallic absorption lines is suggestive of a relatively high metallicity of the gas, and thus of a chemically evolved system which may be associated with a massive galaxy. It is also indicative of a high column density of the gas, typical of damped Ly-alpha systems at high redshifts. We conclude that this is the host galaxy of GRB 990123. No other obvious galaxies are detected within the same projected radius from the OT. There is thus no evidence for strong gravitational lensing magnification of this burst, and some alternative explanation for its remarkable energetics may be required. The observed offset of the OT from the center of its apparent host galaxy, 5.5 +/- 0.9 proper kpc (projected) in the galaxys rest-frame, both refutes the possibility that GRBs are related to galactic nuclear activity and supports models of GRBs which involve the death and/or merger of massive stars. Further, the HST image suggests an intimate connection of GRB 990123 and a star-forming region.
Galaxies are complex systems made up of different structural components such as bulges, discs, and bars. Understanding galaxy evolution requires unveiling, independently, their history of stellar mass and metallicity assembly. We introduce C2D, a new algorithm to perform spectro-photometric multi-component decompositions of integral field spectroscopy (IFS) datacubes. The galaxy surface-brightness distribution at each wavelength (quasi-monochromatic image) is fitted using GASP2D, a 2D photometric decomposition code. As a result, C2D provides both a characteristic one-dimensional spectra and a full datacube with all the spatial and spectral information for every component included in the fit. We show the basic steps of the C2D spectro-photometric fitting procedure, tests on mock datacubes demonstrating its reliability, and a first application of C2D to a sample of three early-type galaxies (ETGs) observed within the CALIFA survey. The resulting datacubes from C2D are processed through the PIPE3D pipeline obtaining both the stellar populations and ionised gas properties of bulges and discs. This paper presents an overview of the potential of C2D+PIPE3D to unveil the formation and evolution of galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا