Do you want to publish a course? Click here

The Metallicity Distribution Function of the Halo of the Milky Way

142   0   0.0 ( 0 )
 Added by Timothy C. Beers
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the distribution of metallicities, [Fe/H], for very metal-poor stars in the halo of the Galaxy. Although the primary information on the nature of the Metallicity Distribution Function (MDF) is obtained from the two major recent surveys for metal-poor stars, the HK survey of Beers and collaborators, and the Hamburg/ESO Survey of Christlieb and collaborators, we also discuss the MDF derived from the publicly available database of stellar spectra and photometry contained in the third data release of the Sloan Digital Sky Survey (SDSS DR-3). Even though the SDSS was not originally planned as a stellar survey, significant numbers of stars have been observed to date -- DR-3 contains spectroscopy for over 70,000 stars, at least half of which are suitable for abundance determinations. There are as many very metal-poor ([Fe/H] < -2.0) stars in DR-3 as have been obtained from all previous survey efforts combined. We also discuss prospects for significant expansion of the list of metal-poor stars to be obtained from the recently funded extension of the SDSS, which includes the project SEGUE: Sloan Extension for Galactic Understanding and Exploration.



rate research

Read More

148 - M. Ness , K. Freeman 2015
The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 < [Fe/H] < 1 dex. The mean of the Metallicity Distribution Function (MDF) decreases as a function of height z from the plane and, more weakly, with galactic radius. The most metal rich stars in the inner Galaxy are concentrated to the plane and the more metal poor stars are found predominantly further from the plane, with an overall vertical gradient in the mean of the MDF of about -0.45 dex/kpc. This vertical gradient is believed to reflect the changing contribution with height of different populations in the inner-most region of the Galaxy. The more metal rich stars of the bulge are part of the boxy/peanut structure and comprise stars in orbits which trace out the underlying X-shape. There is still a lack of consensus on the origin of the metal poor stars ([Fe/H] < -0.5) in the region of the bulge. Some studies attribute the more metal poor stars of the bulge to the thick disk and stellar halo that are present in the inner region, and other studies propose that the metal poor stars are a distinct old spheroid bulge population. Understanding the origin of the populations that make up the MDF of the bulge, and identifying if there is a unique bulge population which has formed separately from the disk and halo, has important consequences for identifying the relevant processes in the the formation and evolution of the Milky Way.
The Pristine survey uses narrow-band photometry to derive precise metallicities down to the extremely metal-poor regime ([Fe/H] < -3), and currently consists of over 4 million FGK-type stars over a sky area of $sim 2~500, mathrm{deg}^2$. We focus our analysis on a subsample of $sim 80~000$ main sequence turnoff stars with heliocentric distances between 6 and 20 kpc, which we take to be a representative sample of the inner halo. The resulting metallicity distribution function (MDF) has a peak at [Fe/H] = -1.6, and a slope of $Delta$(LogN)/$Delta[Fe/H] = 1.0 pm 0.1$ in the metallicity range of -3.4 < [Fe/H] < -2.5. This agrees well with a simple closed-box chemical enrichment model in this range, but is shallower than previous spectroscopic MDFs presented in the literature, suggesting that there may be a larger proportion of metal-poor stars in the inner halo than previously reported. We identify the Monoceros/TriAnd/ACS/EBS/A13 structure in metallicity space in a low latitude field in the anticenter direction, and also discuss the possibility that the inner halo is dominated by a single, large merger event, but cannot strongly support or refute this idea with the current data. Finally, based on the MDF of field stars, we estimate the number of expected metal-poor globular clusters in the Milky Way halo to be 5.4 for [Fe/H] < -2.5 and 1.5 for [Fe/H] < -3, suggesting that the lack of low metallicity globular clusters in the Milky Way is not due simply to statistical undersampling.
112 - Monica Valluri 2011
Resolved surveys of the Milky Ways stellar halo can obtain all 6 phase space coordinates of tens of thousands of individual stars, making it possible to compute their 3-dimensional orbits. Spectral analysis of large numbers of halo orbits can be used to construct frequency maps which are a compact, yet informative representation of their phase space distribution function (DF). Such maps can be used to infer the major types of orbit families that constitute the DF of stellar halo and their relative abundances. The structure of the frequency maps, especially the resonant orbits, reflects the formation history and shape of the dark matter potential and its orientation relative to the disk. The application of frequency analysis to cosmological hydrodynamic simulations of disk galaxies shows that the orbital families occupied by halo stars and dark matter particles are very similar, implying that stellar halo orbits can be used to constrain the DF of the dark matter halo, possibly impacting future direct dark matter detection experiments. An application of these methods to a sample of sim 16,000 Milky Way halo and thick disk stars from the SDSS-SEGUE survey yields a frequency map with strong evidence for resonant trapping of halo stars by the Milky Way disk, in a manner predicted by controlled simulations in which the disk grows adiabatically. The application of frequency analysis methods to current and future phase space data for Milky Way halo stars will provide new insights into the formation history of the dierent components of the Galaxy and the DF of the halo.
We present a low metallicity map of the Milky Way consisting of $sim$111,000 giants with $-3.5 lesssim$ [Fe/H] $lesssim -$0.75, based on public photometry from the second data release of the SkyMapper survey. These stars extend out to $sim$7kpc from the solar neighborhood and cover the main Galactic stellar populations, including the thick disk and the inner halo. Notably, this map can reliably differentiate metallicities down to [Fe/H] $sim -3.0$, and thus provides an unprecedented view into the ancient, metal-poor Milky Way. Among the more metal-rich stars in our sample ([Fe/H] $> -2.0$), we recover a clear spatial dependence of decreasing mean metallicity as a function of scale height that maps onto the thick disk component of the Milky Way. When only considering the very metal-poor stars in our sample ([Fe/H] $< -$2), we recover no such spatial dependence in their mean metallicity out to a scale height of $|Z|sim7$ kpc. We find that the metallicity distribution function (MDF) of the most metal-poor stars in our sample ($-3.0 <$ [Fe/H] $< -2.3$) is well fit with an exponential profile with a slope of $Deltalog(N)/Delta$[Fe/H] = 1.52$pm$0.05, and shifts to $Deltalog(N)/Delta$[Fe/H] = 1.53$pm$0.10 after accounting for target selection effects. For [Fe/H] $< -2.3$, the MDF is largely insensitive to scale height $|Z|$ out to $sim5$kpc, showing that very and extremely metal-poor stars are in every galactic component.
127 - Nikos Prantzos 2008
To account for the observed differential metallicity distribution (DMD) of the Milky Way halo, a semi-analytical model is presented in the framework of the hierarchical merging paradigm for structure formation. It is assumed that the Milky Way halo is composed of a number of sub-haloes with properties either as observed in the dwarf satellite galaxies of the Local group (shape of metallicity distribution, effective yield) or derived from calculations of structure formation (sub-halo distribution function). With reasonable assumptions for the parameters involved, we find that the overall shape and effective yield of the Galactic halo DMD can be reproduced in the framework of such a simple model. The low metallicity tail of the DMD presents a defficiency of stars with respect to the simple model predictions (akin to the G-dwarf problem in the solar neighborhood); it is suggested that an early infall phase can account for that problem, as well as for the observed DMDs of dwarf satellite galaxies.Accretion of galaxies similar (but not identical) to the progenitors of present day dwarf satellites of the Milky Way may well have formed the Galactic halo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا