Do you want to publish a course? Click here

Prevalence of compact nuclear starbursts in nearby Seyfert galaxies

60   0   0.0 ( 0 )
 Added by Kohno Kotaro
 Publication date 2005
  fields Physics
and research's language is English
 Authors K. Kohno




Ask ChatGPT about the research

We present an imaging survey of the CO(1--0), HCN(1--0), and HCO$^+$(1--0) lines in the nearby Seyfert galaxies using the Nobeyama Millimeter Array and RAINBOW Interferometer. Some of the observed Seyfert galaxies including NGC 1068, NGC 1097, NGC 5033, and NGC 5194 exhibit strong HCN(1--0) emission on a few 100 pc scales. The observed HCN(1--0)/CO(1--0) and HCN(1--0)/HCO$^+$(1--0) line ratios in the Seyfert nuclei ($>$0.2 and $>$1.8, respectively) have never been observed in the central regions of nuclear starburst galaxies. On the other hand, the molecular line ratios in the nuclei of NGC 3079, NGC 3227, NGC 4051, NGC 6764, NGC 7479, and NGC 7469 are comparable with those in the nuclear starburst galaxies. We propose that the elevated HCN emission originates from the X-ray irradiated dense molecular tori or XDRs close to the active nuclei. Our HCN/CO and HCN/HCO$^+$ diagrams will provide a new powerful diagnostic of the nuclear power source in active galaxies. Based on our diagnostic, we observe 3 of 5 type-1 Seyferts (6 of 10 in total) host compact nuclear starbursts. Our results are also supported by observations at other wavelengths such as those by L-band PAH spectroscopy. The proposed method will be crucial for investigating extremely dusty nuclei, such as ULIRGs and high-z submm galaxies, because these molecular lines are devoid of dust extinction. As an example, we present the HCN and HCO$^+$ observations of the LIRG NGC 4418, which suggests the presence of a buried active nucleus.



rate research

Read More

187 - Yasuyuki Watabe 2007
We investigated the correlation between nuclear/circumnuclear starbursts around the active galactic nuclei (AGNs) and the AGN activities for 43 Seyfert galaxies in the CfA and 12 micron samples. We found that circumnuclear starburst luminosity as well as nuclear starburst luminosity are positively correlated with AGN luminosity. Moreover, nuclear starburst luminosity is more strongly correlated with the AGN luminosity normalized with AGN Eddington luminosity than is circumnuclear starburst luminosity. This implies that starbursts nearer the AGN could have a greater effect on AGN mass accretion. We also discuss these results from the viewpoint of the radiation effects from starbursts and sequential starbursts.
No mechanisms have hitherto been conclusively demonstrated to be responsible for initiating optically-luminous nuclear (Seyfert) activity in local disk galaxies. Only a small minority of such galaxies are visibly disturbed in optical starlight, with the observed disturbances being at best marginally stronger than those found in matched samples of inactive galaxies. Here, we report the first systematic study of an optically-selected sample of twenty-three active galaxies in atomic hydrogen (HI) gas, which is the most sensitive and enduring tracer known of tidal interactions. Eighteen of these galaxies are (generally) classified as Seyferts, with over half (and perhaps all) having [OIII] luminosities within two orders of magnitude of Quasi-Stellar Objects. Only ~28% of these Seyfert galaxies are visibly disturbed in optical DSS2 images. By contrast, ~94% of the same galaxies are disturbed in HI, in nearly all cases not just spatially but also kinematically on galactic (>~20 kpc) scales. In at least ~67% and perhaps up to ~94% of cases, the observed HI disturbances can be traced to tidal interactions with neighboring galaxies detected also in HI. The majority of these neighboring galaxies have projected separations of <~ 100 kpc and differ in radial velocities by <~100 km/s from their respective Seyfert galaxies, and many have optical luminosities ranging from the Small to Large Magellanic Clouds. In a companion paper, we show that only ~15% of a matched control sample of inactive galaxies display comparable HI disturbances. Our results suggest that: i) most Seyfert galaxies (with high nuclear luminosities) have experienced tidal interactions in the recent past; ii) in most cases, these tidal interactions are responsible for initiating events that lead to their nuclear activity.
We present the analysis of the molecular gas in the nuclear regions of NGC 4968, NGC 4845, and MCG-06-30-15, with the help of ALMA observations of the CO(2-1) emission line. The aim is to determine the kinematics of the gas in the central (~ 1 kpc) region. We use the 3D-Based Analysis of Rotating Object via Line Observations ($^{3D}$BAROLO) and DiskFit softwares. Circular motions dominate the kinematics of the gas in the central discs, mainly in NGC 4845 and MCG-06-30-15, however there is a clear evidence of non-circular motions in the central ($sim$ 1 kpc) region of NGC 4845 and NGC 4968. The strongest non-circular motion is detected in the inner disc of NGC 4968 with velocity $sim 115, rm{km,s^{-1}}$. The bisymmetric model is found to give the best-fit for NGC 4968 and NGC 4845. If the dynamics of NGC 4968 is modeled as a corotation pattern just outside of the bar, the bar pattern speed turns out to be at $Omega_b$ = $52, rm{km,s^{-1},kpc^{-1}}$ the corotation is set at 3.5 kpc and the inner Lindblad resonance (ILR) ring at R = 300pc corresponding to the CO emission ring. The 1.2 mm ALMA continuum is peaked and compact in NGC 4968 and MCG-06-30-15, but their CO(2-1) has an extended distribution. Allowing the CO-to-H$_{2}$ conversion factor $alpha_{CO}$ between 0.8 and 3.2, typical of nearby galaxies of the same type, the molecular mass M(H$_{2}$) is estimated to be $sim 3-12times 10^{7} ~{rm M_odot}$ (NGC 4968), $sim 9-36times 10^{7}~ {rm M_odot}$ (NGC 4845), and $sim 1-4times 10^{7}~ {rm M_odot}$ (MCG-06-30-15). We conclude that the observed non-circular motions in the disc of NGC 4968 and likely that seen in NGC 4845 is due to the presence of the bar in the nuclear region. At the current spectral and spatial resolution and sensitivity we cannot claim any strong evidence in these sources of the long sought feedback/feeding effect due to the AGN presence.
414 - B. B. Dai , X. W. Shu , N. Jiang 2020
We present 5.5 GHz observations with the VLA of a sample of nearby galaxies with energetic nuclear outbursts at mid-infrared (MIR) bands. These observations reach a uniform depth down to a median rms of ~10 uJy, representing one of most sensitive searches for radio emission associated with nuclear transients. We detect radio emission in 12 out of 16 galaxies at a level of >5sigma, corresponding to a detection rate of 75%. Such a high detection is remarkably different from previous similar searches in stellar tidal disruption events. The radio emission is compact and not resolved for the majority of sources on scales of ~<0.5 (<0.9 kpc at z<0.1). We find the possibility of the star-formation contributing to the radio emission is low, but an AGN origin remains a plausible scenario, especially for sources that show evidence of AGN activity in their optical spectra. If the detections could represent radio emission associated with nuclear transient phenomenon such as jet or outflow, we use the blast wave model by analogy with the GRB afterglows to describe the evolution of radio light curves. In this context, the observations are consistent with a decelerating jet with an energy of ~10^{51-52} erg viewed at 30degree-60degree off-axis at later times, suggesting that powerful jets may be ubiquitous among MIR-burst galaxies. Future continuous monitoring observations will be crucial to decipher the origin of radio emission through detections of potential flux and spectral evolution. Our results highlight the importance of radio observations to constrain the nature of nuclear MIR outbursts in galaxies.
We test whether there is a relation between the observed tidal interactions and Seyfert activity by imaging in HI twenty inactive galaxies at the same spatial resolution and detection threshold as the Seyfert sample. This control sample of inactive galaxies were closely matched in Hubble type, range in size and inclination, and have roughly comparable galaxy optical luminosity to the Seyfert galaxies. We find that only ~15% of the galaxies in our control sample are disturbed in HI, whereas the remaining ~85% show no disturbances whatsoever in HI. Even at a spatial resolution of ~10 kpc, none of the latter galaxies show appreciable HI disturbances reminiscent of tidal features. In a companion paper (Kuo et al. 2008), we report results from the first systematic imaging survey of Seyfert galaxies in atomic hydrogen (HI) gas. We find that only ~28% of the eighteen Seyfert galaxies in that sample are visibly disturbed in optical starlight. By contrast, ~94% of the same Seyfert galaxies are disturbed spatially and usually also kinematically in HI gas on galactic scales of >~20 kpc. In at least ~67% and up to perhaps ~94% of cases, the observed disturbances can be traced to tidal interactions with neighboring galaxies detected also in HI. The dramatic contrast between the observed prevalence of HI disturbances in the Seyfert and control samples implicates tidal interactions in initiating events that lead to luminous Seyfert activity in a large fraction of local disk galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا