The Gemini Deep Deep Survey. VII. The Redshift Evolution of the Mass-Metallicity Relation


Abstract in English

We have investigated the mass-metallicity (M-Z) relation using galaxies at 0.4<z<1.0 from the Gemini Deep Deep Survey and Canada-France Redshift Survey. Deep K and z band photometry allowed us to measure stellar masses for 69 galaxies. From a subsample of 56 galaxies, for which metallicity of the interstellar medium is also measured, we identified a strong correlation between mass and metallicity, for the first time in the distant Universe. This was possible because of the larger base line spanned by the sample in terms of metallicity (a factor of 7) and mass (a factor of 400) than in previous works. This correlation is much stronger and tighter than the luminosity-metallicity, confirming that stellar mass is a more meaningful physical parameter than luminosity. We find clear evidence for temporal evolution in the M-Z relation in the sense that at a given mass, a galaxy at z=0.7 tends to have lower metallicity than a local galaxy of similar mass. We use the z=0.1 SDSS M-Z relation, and a small sample of z=2.3 Lyman break galaxies with known mass and metallicity, to propose an empirical redshift-dependent M-Z relation, according to which the stellar mass and metallicity in small galaxies evolve for a longer time than in massive galaxies. This relation predicts that the generally metal poor damped Lyman-alpha galaxies have stellar masses of the order of 10^8.8 M_sun (with a dispersion of 0.7 dex) all the way from z=0.2 to z=4. The observed redshift evolution of the M-Z relation can be reproduced remarkably well by a simple closed-box model where the key assumption is an e-folding time for star formation which is higher or, in other words, a period of star formation that lasts longer in less massive galaxies than in more massive galaxies. Such a picture supports the downsizing scenario for galaxy formation.

Download