Do you want to publish a course? Click here

The Millennium Galaxy Catalogue: On the natural sub-division of galaxies

61   0   0.0 ( 0 )
 Added by Simon Ellis
 Publication date 2005
  fields Physics
and research's language is English
 Authors S.C. Ellis




Ask ChatGPT about the research

The distribution of global photometric, spectroscopic, structural and morphological parameters for a well defined sample of 350 nearby galaxies has been examined. The usual trends were recovered demonstrating that E/S0 galaxies are redder, more quiescent, more centrally concentrated and possess larger Sersic indices than later type galaxies. Multivariate statistical analyses were performed to examine the distribution of all parameters simultaneously. The main result of these analyses was the existence of only two classes of galaxies, corresponding closely to early and late types. Linear discriminant analysis was able to reproduce the classifications of early and late types galaxies with high success, but further refinement of galaxy types was not reproduced in the distribution of observed galaxy properties. A principal components analysis showed that the major variance of the parameter set corresponded to a distinction between early and late types, highlighting the importance of the distinction. A hierarchical clustering analysis revealed only two clear natural classes within the parameter set, closely corresponding to early and late types. Early and late types are clearly distinct and the distinction is of fundamental importance. In contrast, late types from Sa to Irr are smoothly distributed throughout the parameter space. A population of galaxies classified by eye as elliptical/lenticular, and exhibiting concentration indices similar to early-types were found to have a significant star-formation activity. These galaxies are preferentially faint, suggesting they are low-mass systems.



rate research

Read More

We provide a new estimate of the local supermassive black hole mass function using (i) the empirical relation between supermassive black hole mass and the Sersic index of the host spheroidal stellar system and (ii) the measured (spheroid) Sersic indices drawn from 10k galaxies in the Millennium Galaxy Catalogue. The observational simplicity of our approach, and the direct measurements of the black hole predictor quantity, i.e. the Sersic index, for both elliptical galaxies and the bulges of disc galaxies makes it straightforward to estimate accurate black hole masses in early- and late-type galaxies alike. We have parameterised the supermassive black hole mass function with a Schechter function and find, at the low-mass end, a logarithmic slope (1+alpha) of ~0.7 for the full galaxy sample and ~1.0 for the early-type galaxy sample. Considering spheroidal stellar systems brighter than M_B = -18 mag, and integrating down to black hole masses of 10^6 M_sun, we find that the local mass density of supermassive black holes in early-type galaxies rho_{bh, early-type} = (3.5+/-1.2) x 10^5 h^3_{70} M_sun Mpc^{-3}, and in late-type galaxies rho_{bh, late-type} = (1.0+/-0.5) x 10^5 h^3_{70} M_sun Mpc^{-3}. The uncertainties are derived from Monte Carlo simulations which include uncertainties in the M_bh-n relation, the catalogue of Sersic indices, the galaxy weights and Malmquist bias. The combined, cosmological, supermassive black hole mass density is thus Omega_{bh, total} = (3.2+/-1.2) x 10^{-6} h_70. That is, using a new and independent method, we conclude that (0.007+/-0.003) h^3_{70} per cent of the universes baryons are presently locked up in supermassive black holes at the centres of galaxies.
612 - R. De Propris 2007
We compare the use of galaxy asymmetry and pair proximity for measuring galaxy merger fractions and rates for a volume limited sample of 3184 galaxies with -21 < M(B) -5 log h < -18 mag. and 0.010 < z < 0.123 drawn from the Millennium Galaxy Catalogue. Our findings are that: (i) Galaxies in close pairs are generally more asymmetric than isolated galaxies and the degree of asymmetry increases for closer pairs. At least 35% of close pairs (with projected separation of less than 20 h^{-1} kpc and velocity difference of less than 500 km s^{-1}) show significant asymmetry and are therefore likely to be physically bound. (ii) Among asymmetric galaxies, we find that at least 80% are either interacting systems or merger remnants. However, a significant fraction of galaxies initially identified as asymmetric are contaminated by nearby stars or are fragmented by the source extraction algorithm. Merger rates calculated via asymmetry indices need careful attention in order to remove the above sources of contamination, but are very reliable once this is carried out. (iii) Close pairs and asymmetries represent two complementary methods of measuring the merger rate. Galaxies in close pairs identify future mergers, occurring within the dynamical friction timescale, while asymmetries are sensitive to the immediate pre-merger phase and identify remnants. (iv) The merger fraction derived via the close pair fraction and asymmetries is about 2% for a merger rate of (5.2 +- 1.0) 10^{-4} h^3 Mpc^{-3} Gyr^{-1}. These results are marginally consistent with theoretical simulations (depending on the merger time-scale), but imply a flat evolution of the merger rate with redshift up to z ~1.
109 - Alex Smith 2017
Future galaxy surveys require realistic mock catalogues to understand and quantify systematics in order to make precise cosmological measurements. We present a halo lightcone catalogue and halo occupation distribution (HOD) galaxy catalogue built using the Millennium-XXL (MXXL) simulation. The halo catalogue covers the full sky, extending to z = 2 with a mass resolution of ~1e11 Msun/h . We use this to build a galaxy catalogue, which has an r-band magnitude limit of r < 20.0, with a median redshift of z~0.2. A Monte Carlo HOD method is used to assign galaxies to the halo lightcone catalogue, and we evolve the HODs to reproduce a target luminosity function; by construction, the luminosity function of galaxies in the mock is in agreement with the Sloan Digital Sky Survey (SDSS) at low redshifts and the Galaxy and Mass Assembly (GAMA) survey at high redshifts. A Monte Carlo method is used to assign a 0.1(g-r) colour to each galaxy, and the colour distribution of galaxies at different redshifts agrees with measurements from GAMA. The clustering of galaxies in the mock for galaxies in different magnitude and redshift bins is in good agreement with measurements from SDSS and GAMA, and the colour-dependent clustering is in reasonable agreement. We show that the baryon acoustic oscillation (BAO) can be measured in the mock catalogue, and the redshift space distortions (RSDs) are in agreement with measurements from SDSS, illustrating that this catalogue will be useful for upcoming surveys.
The Millennium Galaxy Catalogue (MGC) is a deep ($mu_{rm B,lim}=26$ mag arcsec$^{-2}$), wide field CCD imaging survey, covering 37.5deg$^2$ and is completely contained within the 2dFGRS and SDSS-EDR. We compare the photometry and completeness of the 2dFGRS and the SDSS-EDR with the MGC. We have also undertaken a photometric comparison to SCOS and SDSS-DR1 data. We find that $B_{MGC}-B_{2dF}=0.035$ mag with an uncertainty of 0.142 mag per galaxy, $B_{MGC}-B_{SCOS}=0.032$ mag with an uncertainty of 0.108 mag, $B_{MGC}-B_{SDSS-EDR}=0.032$ mag with an uncertainty of 0.094 mag, and $B_{MGC}-B_{SDSS-DR1}=0.039$ mag with an uncertainty of 0.086 mag. We find that high surface brightness 2dFGRS galaxies are systematically too faint. In the SDSS there is a weak non-linear scale error, which is negligible for faint galaxies. LSBGs in the SDSS are systematically fainter. We find that the 2dFGRS catalogue has 5.2% stellar contamination, 7.0% of objects are resolved into 2 or more by the MGC and is 8.7% incomplete compared to the MGC. From our all object spectroscopic survey we find that the MGC is itself misclassifying 5.6% of galaxies as stars, hence the 2dFGRS misses 14.3% of the galaxies. The SDSS-EDR galaxy catalogue has 1.3% stellar contamination and 5.3% of galaxies misclassified as stars, and is 1.8% incomplete compared to the MGC. Altogether 7.1% of the total galaxy population are missing from the SDSS-EDR catalogue from incompleteness or misclassification.
Based on our sample of 10095 galaxies with bulge-disc decompositions we derive the empirical B-band internal attenuation--inclination relation for galaxy discs and their associated central bulges. Our results agree well with the independently derived dust models of Tuffs et al., leading to a direct constraint on the mean opacity of spiral discs of Tau_B^f = 3.8 +/- 0.7 (central face-on B-band opacity). Depending on inclination, the B-band attenuation correction varies from 0.2 -- 1.1 mag for discs and from 0.8 -- 2.6 mag for bulges. We find that, overall, 37 per cent of all B-band photons produced in discs in the nearby universe are absorbed by dust, a figure that rises to 71 per cent for bulge photons. The severity of internal dust extinction is such that one must incorporate internal dust corrections in all optical studies of large galaxy samples. This is particularly pertinent for optical HST comparative evolutionary studies as the dust properties will also be evolving. We use the new results to revise our recent estimates of the spheroid and disc luminosity functions. From our best fitting dust models we derive a redshift zero cosmic dust density of rho_{dust} ~ (5.3 +/- 1.7) x 10^5, h M_{odot} Mpc^-3. This implies that (0.0083 +/- 0.0027), h per cent of the baryons in the Universe are in the form of dust and (11.9 +/- 1.7), h per cent (Salpeter-`lite IMF) are in the form of stars (~58 per cent reside in galaxy discs, ~10 per cent in red elliptical galaxies, ~29 per cent in classical galaxy bulges and the remainder in low luminosity blue spheroid systems/components). [Abridged]
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا