Exploring the Kinematics of the Oxygen-Rich Supernova Remnant G292.0+1.8: Ejecta Shells, Fast-Moving Knots and Shocked Circumstellar Material


Abstract in English

We present results of an in-depth optical study of the core collapse supernova remnant G292.0+1.8 using the Rutgers Fabry-Perot (RFP) imaging spectrometer. Our observations provide a detailed picture of the supernova remnant in the emission lines of [O III] 5007, Halpha and [N II] 6548. The [O III] Fabry-Perot scans reveal a bright crescent-shaped spur of previously known high-velocity (V_radial ~ 1500 km/s) O-rich ejecta located on the eastern side of the remnant. The spur consists of a semi-coherent structure of mostly redshifted material, along with several clumps that have apparently broken out of the more orderly shell-like expansion. The high velocity (>= 600 km/s) component of the spur also displays a scalloped morphology characteristic of Rayleigh-Taylor instabilities. We also find a large number of fast-moving knots (FMKs) of O-rich ejecta undetected in prior photographic plate images and similar to features seen in Cas A. The position-velocity distribution of the FMKs can be kinematically described as a shell 3.4 in radius expanding at a velocity of 1700 km/s. Another feature apparent in the [O III] scans is an equatorial belt consisting of both a bar-like structure at zero radial velocity and a clumpy, high velocity ejecta component seen in projection along the line of sight. The bar is also detected in our Halpha RFP images at zero radial velocity, providing further evidence that this structure is of circumstellar origin. We find that the optical and X-ray properties of the bar are consistent with incomplete (partially radiative) shocks in material of moderate densities. Assuming a distance of 6 kpc for G292.0+1.8, we estimate a kinematic age of (3000-3400) d_6 years for this remnant (Abridged).

Download