Do you want to publish a course? Click here

X-ray obscuration and obscured AGN in the local universe

170   0   0.0 ( 0 )
 Added by Matteo Guainazzi
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we discuss the X-ray properties of 49 local (z<0.035) Seyfert 2 galaxies with HST/WFC2 high-resolution optical coverage. It includes the results of 26 still unpublished Chandra and XMM-Newton observations, which yield 25 (22) new X-ray detections in the 0.5-2 keV (2-10 keV) energy band. Our sample covers a range in the 2-10 keV observed flux from 3x10^{-11} to 6x10^{-15} erg cm$^{-2}$ s$^{-1}$. The percentage of the objects which are likely obscured by Compton-thick matter (column density, N_H>1.6x10^{24} atoms/cm/cm) is ~50%, and reaches ~80% for log(F_{2-10})<12.3. Hence, K-alpha fluorescent iron lines with large Equivalent Width (EW > 0.6 keV) are common in our sample (6 new detections at a confidence level >2 sigma). They are explained as due to reflection off the illuminated side of optically thick material. We confirm a correlation between the presence of a ~100-pc scale nuclear dust in the WFC2 images and Compton-thin obscuration. We interpret this correlation as due to the large covering fraction of gas associated with the dust lanes following an idea originally proposed by Malkan et al. 1998, and Matt 2000). The X-ray spectra of highly obscured AGN invariably present a prominent soft excess emission above the extrapolation of the hard X-ray component. This soft component can account for a very large fraction of the overall X-ray energy budget. As this component is generally unobscured - and therefore likely produced in extended gas structures - it may lead to a severe underestimation of the nuclear obscuration in z~1 absorbed AGN, if standard X-ray colors are used to classify them. As a by-product of our study, we report the discovery of a soft X-ray, luminous (~7x10^{40} erg/s) halo embedding the interacting galaxy pair Mkn266.



rate research

Read More

The sources discovered in deep hard X-ray surveys with 2-8 keV fluxes of 10^-14 erg cm^-2 s^-1 make up the bulk of the X-ray background at these energies. We present here detailed multi-wavelength observations of three such sources from the ELAIS Deep X-ray Survey. The observations include sensitive near-infrared spectroscopy with the Subaru Telescope and X-ray spectral information from the Chandra X-ray Observatory. The sources observed all have optical-to-near-IR colours redder than an unobscured quasar and comprise a reddened quasar, a radio galaxy and an optically-obscured AGN. The reddened quasar is at a redshift z=2.61 and shows a very large X-ray absorbing column of N_H approx 3.10^23 cm^-2. This contrasts with the relatively small amount of dust reddening, implying a gas-to-dust ratio along the line-of-sight a hundred times greater than that of the Milky Way. The radio galaxy at z=1.57 shows only narrow emission lines, but has a surprisingly soft X-ray spectrum. The softness of this spectrum either indicates an unusually low gas-to-dust ratio for the absorbing medium or X-ray emission related to the young radio source. The host galaxy is extremely red (R-K=6.4) and its optical/near-IR spectrum is best fit by a strongly reddened (A_V~2) starburst. The third X-ray source discussed is also extremely red (R-K=6.1) and lies in a close grouping of three other R-K>6 galaxies. No emission or absorption lines were detected from this object, but its redshift (and that of one of the nearby galaxies) are constrained by SED-fitting to be just greater than z=1. The extremely red colours of these two galaxies can be accounted for by old stellar populations. These observations illustrate the diverse properties of hard X-ray selected AGN.
Using self-consistent, physically motivated models, we investigate the X-ray obscuration in 19 Type 2 [OIII] 5007 AA selected AGN, 9 of which are local Seyfert 2 galaxies and 10 of which are Type 2 quasar candidates. We derive reliable line-of-sight and global column densities for these objects, which is the first time this has been reported for an AGN sample; 4 AGN have significantly different global and line-of-sight column densities. Five sources are heavily obscured to Compton-thick. We comment on interesting sources revealed by our spectral modeling, including a candidate ``naked Sy2. After correcting for absorption, we find that the ratio of the rest-frame, 2-10 keV luminosity (L$_{rm 2-10keV,in}$) to L$_{rm [OIII]}$ is 1.54 $pm$ 0.49 dex which is essentially identical to the mean Type 1 AGN value. The Fe K$alpha$ luminosity is significantly correlated with L$_{rm [OIII]}$, but with substantial scatter. Finally, we do not find a trend between L$_{rm 2-10keV,in}$ and global or line-of-sight column density, between column density and redshift, between column density and scattering fraction or between scattering fraction and redshift.
59 - J. L. Donley 2006
We present the results of a Spitzer search for obscured AGN in the Chandra Deep Field-North, using both radio-excess and mid-infrared power-law selection. AGN selected via the former technique tend to lie at z ~ 1, have SEDs dominated by the 1.6 micron stellar bump, and have Seyfert-like X-ray luminosities (when detected in the X-ray). In contrast, the IRAC (3.6-8.0 micron) power-law selected AGN lie at higher redshifts of z ~ 2, and comprise a significant fraction of the most X-ray luminous AGN in the CDF-N. While there is almost no overlap in the AGN samples selected via these two methods, their X-ray detection fractions are very similar. Only 40% and 55% of the radio-excess and power-law samples are detected in the 2 Ms X-ray catalog, respectively. The majority of the AGN selected via both methods are consistent with being obscured (N_H > 10^(22) cm^-2), but not Compton-thick (N_H > 10^(24) cm^-2), although Compton-thick candidates exist in both samples. We place an upper limit of <82% (or < 4:1) on the obscured fraction of the power-law sample, consistent with predictions from the cosmic X-ray background. The sources selected via the power-law criteria comprise a subset of AGN selected via other IRAC color-color cuts. While smaller in number than the color-selected samples in the deep fields, the power-law sample suffers from less contamination by star-forming galaxies.
We present the Catalog of High REsolution Spectra of Obscured Sources (CHRESOS) from the XMM-Newton Science Archive. It comprises the emission-line luminosities of H- and He-like transitions from C to Si, and the Fe 3C and Fe 3G L-shell ones. Here, we concentrate on the soft X-ray OVII(f) and OVIII Ly_alpha emission lines to shed light onto the physical processes with which their formation can be related to: active galactic nucleus vs. star forming regions. We compare their luminosity with that of two other important oxygen key lines [OIII]5007A, in the optical, and [OIV]25.89mic, in the IR. We also test OVII(f) and OVIIILy_alpha luminosities against that of continuum bands in the IR and hard X-rays, which point to different ionization processes. We probe into those processes by analyzing photoionization and colisional ionization model predictions upon our lines. We show that both scenarios can explain the formation and observed intensities of OVII(f) and OVIII Ly_alpha. By analyzing the relationships between OVII(f) and OVIII Ly_alpha, and all other observables: [OIII]5007A, [OIV]25.89mic emission lines, and MIR-12mic, FIR-60mic, FIR-100mic, 2-10 keV and 14-195 keV continuum bands, we conclude that the AGN radiation field is mainly responsible of the soft X-ray oxygen excitation.
Many radio galaxies show the presence of dense and dusty gas near the active nucleus. This can be traced by both 21cm HI absorption and soft X-ray absorption, offering new insight into the physical nature of the circumnuclear medium of these distant galaxies. To better understand this relationship, we investigate soft X-ray absorption as an indicator for the detection of associated HI absorption, as part of preparation for the First Large Absorption Survey in HI (FLASH) to be undertaken with the Australian Square Kilometre Array Pathfinder (ASKAP). We present the results of our pilot study using the Boolardy Engineering Test Array, a precursor to ASKAP, to search for new absorption detections in radio sources brighter than 1 Jy that also feature soft X-ray absorption. Based on this pilot survey, we detected HI absorption towards the radio source PKS 1657-298 at a redshift of z = 0.42. This source also features the highest X-ray absorption ratio of our pilot sample by a factor of 3, which is consistent with our general findings that X-ray absorption predicates the presence of dense neutral gas. By comparing the X-ray properties of AGN with and without detection of HI absorption at radio wavelengths, we find that X-ray hardness ratio and HI absorption optical depth are correlated at a statistical significance of 4.71{sigma}. We conclude by considering the impact of these findings on future radio and X-ray absorption studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا