Near-Infrared Spectroscopy of 0.4<z<1.0 CFRS Galaxies: Oxygen Abundances, SFRs and Dust


Abstract in English

Using new J-band VLT-ISAAC and Keck-NIRSPEC spectroscopy, we have measured Halpha and [NII] line fluxes for 0.47<z<0.92 CFRS galaxies which have [OII], Hbeta and [OIII]a line fluxes available from optical spectroscopy, to investigate how the properties of the star forming gas in galaxies evolve with redshift. We derive the extinction and oxygen abundances for the sample using a method based on a set of ionisation parameter and oxygen abundance diagnostics, simultaneously fitting the [OII], Hbeta,[OIII], Halpha, and [NII] line fluxes. The individual reddening measurements allow us to accurately correct the Halpha-based star formation rate (SFR) estimates for extinction. Our most salient conclusions are: a) in all 30 CFRS galaxies the source of gas ionisation is not due to AGN activity; b) we find a range of 0<AV<3, suggesting that it is important to determine the extinction for every single galaxy in order to reliably measure SFRs and oxygen abundances in high redshift galaxies; c) high values of [NII]/Halpha >0.1 for most (but not all) of the CFRS galaxies indicate that they lie on the high-metallicity branch of the R23 calibration; d) about one third of the 0.47<z<0.92 CFRS galaxies in our sample have lower metallicities than local galaxies with similar luminosities and star formation rates; e) comparison with a chemical evolution model indicates that these low metallicity galaxies are unlikely to be the progenitors of metal-poor dwarf galaxies at z~0.

Download