No Arabic abstract
We report the detection, from FUSE data, of phosphorus in the atmospheres of GD71 and two similar DA white dwarfs. This is the first detection of a trace metal in the photosphere of the spectrophotometric standard star GD71. Collectively, these objects represent the coolest DA white dwarfs in which photospheric phosphorus has been observed. We use a grid of homogeneous non-LTE synthetic spectra to measure abundances of[P/H]=-8.57 +0.09 -0.13, -8.70 +0.23 -0.37 and -8.36 +0.14 -0.19 in GD71, RE J1918+595 and RE J0605-482 respectively. At the observed level we find phosphorus has no significant impact on the overall energy distribution of GD71. We explore possible mechanisms responsible for the presence of this element in these stars, concluding that the most likely is an interplay between radiative levitation and gravitational settling but possibly modified by weak mass loss.
We have analysed a sample of 23 hot DAs to better understand the source of the circumstellar features reported in previous work. Unambiguous detections of circumstellar material are again made at eight stars. The velocities of the circumstellar material at three of the white dwarfs are coincident with the radial velocities of ISM along the sight line to the stars, suggesting that the objects may be ionising the ISM in their locality. In three further cases, the circumstellar velocities are close to the ISM velocities, indicating that these objects are either ionising the ISM, or evaporated planetesimals/material in a circumstellar disc. The circumstellar velocity at WD 1614-084 lies far from the ISM velocities, indicating either the ionisation of an undetected ISM component or circumstellar material. The material seen at WD 0232+035 can be attributed to the photoionisation of material lost from its M dwarf companion. The measured column densities of the circumstellar material lie within the ionised ISM column density ranges predicted to exist in hot DA Stromgren spheres.
The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two new outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with T_eff = 10,780 +/- 140 K and log(g) = 7.94 +/- 0.08, shows outbursts recurring on average every 5.0 d, increasing the overall flux by up to 15%. EPIC 229227292, with T_eff = 11,190 +/- 170 K and log(g) = 8.02 +/- 0.05, has outbursts that recur roughly every 2.4 d with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.
We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200, Kitt Peak 4-meter, and Bok 2.3-meter telescopes. Using atmospheric models we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Keplers unprecedented photometry. Our results are as follows: i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these eleven happens to be a presumed binary, KIC 11604781, with a period of ~5 days. ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strips location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation timescales.
We have analyzed FUSE observations of six hot white dwarf stars: four DA white dwarfs with T_eff >= 45000K, the DAO Feige55 (T_eff = 55000K), and the DA CD -38 10980 (T_eff = 24000K). Photospheric lines from SiIV, PV, and SVI can be observed in the majority of the five hotter objects. Feige55 shows also several other heavier elements. The measured abundances agree only partly with the predictions of the radiative levitation theory. We attribute this to current limitations of the models and the probable presence of mass loss. In the spectrum of CD -38 10980, we have observed the quasi-molecular satellites of Lbeta. This confirms theoretical predictions about the visibility range for these features.
The importance to stellar evolution of understanding the metal abundances in hot white dwarfs is well known. Previous work has found the hot DA white dwarfs REJ 1032+532, REJ 1614-085 and GD 659 to have highly abundant, stratified photospheric nitrogen, due to the narrow absorption line profiles of the FUV N V doublet and the lack of EUV continuum absorption. A preliminary analysis of the extremely narrow, deep line profiles of the photospheric metal absorption features of PG 0948+534 suggested a similar photospheric metal configuration. However, other studies have found REJ 1032+532, REJ 1614-085 and GD 659 can be well described by homogeneous models, with nitrogen abundances more in keeping with those of white dwarfs with higher effective temperatures. Here, a re-analysis of the nitrogen absorption features seen in REJ 1032+532, REJ 1614-085 and GD 659 is presented, with the aim of better understanding the structure of these stars, to test which models better represent the observed data and apply the results to the line profiles seen in PG 0948+534. A degeneracy is seen in the modelling of the nitrogen absorption line profiles of REJ 1032+532, REJ 1614-085 and GD 659, with low abundance, homogeneously distributed nitrogen models most likely being a better representation of the observed data. In PG 0948+534, no such degeneracy is seen, and the enigmatically deep line profiles could not be modelled satisfactorially.