Power Spectrum and Intermittency of Ly${alpha}$ Transmitted Flux of QSO He2347-4342


Abstract in English

We have studied the power spectrum and the intermittent behavior of the fluctuations in the transmitted flux of HE2347-4342 ${rm Ly}{alpha}$ absorption in order to investigate if there is any discrepancy between the LCDM model with parameters given by the WMAP and observations on small scales. If the non-Gaussianity of cosmic mass field is assumed to come only from halos with an universal mass profile of the LCDM model, the non-Gaussian behavior of mass field would be effectively measured by its intermittency, because intermittency is a basic statistical feature of the cuspy structures. We have shown that the Ly$alpha$ transmitted flux field of HE2347-4342 is significantly intermittent on small scales. With the hydrodynamic simulation, we demonstrate that the LCDM model is successful in explaining the power spectrum and intermittency of ${rm Ly}{alpha}$ transmitted flux. Using statistics ranging from the second to eighth order, we find no discrepancy between the LCDM model and the observed transmitted flux field, and no evidence to support the necessity of reducing the power of density perturbations relative to the standard LCDM model up to comoving scales as small as about $0.08 {rm h}^{-1} {rm Mpc}$. Moreover, our simulation samples show that the intermittent exponent of the Ly$alpha$ transmitted flux field is probably scale-dependent. This result is different from the prediction of universal mass profile with a constant index of the central cusp. The scale-dependence of the intermittent exponent indicates that the distribution of baryonic gas is decoupled from the underlying dark matter.

Download