Do you want to publish a course? Click here

A survey of NB921 dropouts in the Subaru Deep Field

85   0   0.0 ( 0 )
 Added by Yasuhiro Shioya
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to search for high-redshift galaxies beyond $z = 6.6$ in the Subaru Deep Field, we have investigated NB921-dropout galaxies where NB921 is the narrowband filter centered at 919.6 nm with FWHM of 13.2 nm for the Suprime-Cam on the Subaru Telescope. There are no secure NB921-dropout candidates brighter than $z^prime = 25.5$. Based on this result, we discuss the UV luminosity function of star-forming galaxies at $z > 6.6$.



rate research

Read More

We report new follow-up spectroscopy of i-dropout galaxies with an NB921-band depression found in the Subaru Deep Field. The NB921-depressed i-dropout selection method is expected to select galaxies with large equivalent width Ly alpha emission over a wide redshift range, 6.0<z<6.5. Two of four observed targets show a strong emission line with a clear asymmetric profile, identified as Ly alpha emitters at z=6.11 and 6.00. Their rest-frame equivalent widths are 153A and 114A, which are lower limits on the intrinsic equivalent widths. Through our spectroscopic observations (including previous ones) of NB921-depressed i-dropout galaxies, we identified 5 galaxies in total with a rest-frame equivalent width larger than 100A at 6.0<z<6.5 out of 8 photometric candidates, which suggests that the NB921-depressed i-dropout selection method is possibly an efficient way to search for Ly alpha emitters with a large Ly alpha equivalent width, in a wider redshift range than usual narrow-band excess techniques. By combining these findings with our previous observational results, we infer that the fraction of broad-band selected galaxies having a rest-frame equivalent width larger than 100A is significantly higher at z~6 (the cosmic age of ~1 Gyr) than that at z~3 (~2 Gyr), being consistent with the idea that the typical stellar population of galaxies is significantly younger at z~6 than that at z~3. The NB921-depressed i-dropout galaxies may be interesting candidates for hosts of massive, zero-metallicity Population III stars.
156 - Masami Ouchi 2001
We study the clustering properties of about 1200 z~4 Lyman Break Galaxy (LBG) candidates with i<26 which are selected by color from deep BRi imaging data of a 618 arcmin^2 area in the Subaru/XMM-Newton Deep Field taken with Subaru Prime Focus Camera. The contamination and completeness of our LBG sample are evaluated, on the basis of the Hubble Deep Field North (HDFN) objects, to be 17% and 45%, respectively. We derive the angular correlation function over theta = 2-1000, and find that it is fitted fairly well by a power law, omega(theta)=A_omega theta^{-0.8}, with A_omega = 0.71 +/- 0.26. We then calculate the correlation length r0 (in comoving units) of the two-point spatial correlation function xi(r) = (r/r0)^{-1.8} from A_omega using the redshift distribution of LBGs derived from the HDFN, and find r0=2.7 (+0.5/-0.6) h^{-1} Mpc in a Lambda-dominated universe (Omega_m=0.3 and Omega_Lambda=0.7). This is twice larger than the correlation length of the dark matter at z~4 predicted from an analytic model by Peacock & Dodds but about twice smaller than that of bright galaxies predicted by a semi-analytic model of Baugh et al. We find an excess of omega(theta) on small scales (theta < 5) departing from the power law fit over 3 sigma significance levels. Interpreting this as due to galaxy mergers, we estimate the fraction of galaxies undergoing mergers in our LBG sample to be 3.0 +/- 0.9%, which is significantly smaller than those of galaxies at intermediate redshifts.
We search for stars with proper motions in a set of twenty deep Subaru images, covering about 0.28 square degrees to a depth of i ~ 25, taken over a span of six years. In this paper, we describe in detail our reduction and techniques to identify moving objects. We present a first sample of 99 stars with motions of high significance, and discuss briefly the populations from which they are likely drawn. Based on photometry and motions alone, we expect that 9 of the candidates may be white dwarfs. We also find a group of stars which may be extremely metal-poor subdwarfs in the halo.
Context: The Subaru Deep Field (SDF) Supernova Survey discovered 10 Type Ia supernovae (SNe Ia) in the redshift range 1.5<z<2.0, as determined solely from photometric redshifts of the host galaxies. However, photometric redshifts might be biased, and the SN sample could be contaminated by active galactic nuclei (AGNs). Aims: We aim to obtain the first robust redshift measurement and classification of a z > 1.5 SDF SN Ia host galaxy candidate Methods: We use the X-shooter (U-to-K-band) spectrograph on the Very Large Telescope to allow the detection of different emission lines in a wide spectral range. Results: We measure a spectroscopic redshift of 1.54563 +/- 0.00027 of hSDF0705.25, consistent with its photometric redshift of 1.552 +/- 0.018. From the strong emission-line spectrum we rule out AGN activity, thereby confirming the optical transient as a SN. The host galaxy follows the fundamental metallicity relation defined in Mannucci et al. (2010, 2011) showing that the properties of this high-redshift SN Ia host galaxy is similar to other field galaxies. Conclusions: Spectroscopic confirmation of additional SDF SN hosts would be required to confirm the cosmic SN rate evolution measured in the SDF.
The Subaru Deep Field (SDF) project is a program of Subaru Observatory to carry out a deep galaxy survey over a blank field as large as 34x27. The program consists of very deep multi-band optical imaging, near infrared imaging for smaller portions of the field and follow-up optical spectroscopy. Major scientific goals of the project are to construct large samples of Lyman-break galaxies at z~4-5 and Lyman alpha emitters at z~5.7 and 6.6, and to make detailed studies these very high-redshift galaxy populations. In this paper, we describe the optical imaging observations and data reduction, presenting mosaicked images and object catalogs in seven bandpasses.The optical imaging was made through five broad-band filters, B, V, R, i, z, and two narrow-band filters, NB816 (lambda_c=8150A) and NB921 (lambda_c=9196A) with almost 10 hours long integrations for each band. The limiting magnitudes measured at 3-sigma on a 2 aperture are B=28.45, V=27.74, R=27.80, i=27.43, z=26.62, NB816=26.63, and NB921=26.54 in the AB system. The object catalog constructed for each of the seven bands contains more than 10^5 objects. The galaxy number counts corrected for detection incompleteness and star count contribution are found to be consistent with previous results in the literature. The mosaicked images and catalogs of all the bands have been made open to the public on Oct. 1, 2004 on the SDF project website at http://soaps.naoj.org/sdf/.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا