No Arabic abstract
We present Infrared Array Camera (IRAC) data and source catalogs from the Spitzer Space Telescope Extragalactic First Look Survey. The data were taken in four broad bands centered at nominal wavelengths of 3.6, 4.5, 5.8 and 8.0 microns. A set of mosaics and catalogs have been produced which are ~80% complete and ~99% reliable to their chosen flux density limits. The main field survey covers 3.8 deg^2, and has flux density limits of 20muJy, 25muJy, 100muJy and 100muJy at wavelengths of 3.6, 4.5, 5.8 and 8.0 microns,respectively. The deeper ``verification survey covers 0.25 deg^2 with limits of 10muJy, 10muJy, 30muJy and 30muJy, respectively. We also include deep data in the ELAIS-N1 field which covers 0.041deg^2 with limits of 4muJy, 3muJy, 10muJy and 10muJy, respectively, but with only two wavelength coverage at a given sky position. The final bandmerged catalogs contain 103193 objects in the main field, 12224 in the verification field and 5239 in ELAIS-N1. Flux densities of high signal-to-noise objects are accurate to about 10%, and the residual systematic error in the absolute flux density scale is ~2-3%. We have successfully extracted sources at source densities as high as 100000 deg^-2 in our deepest 3.6 and 4.5 micron data. The mosaics and source catalogs will be made available through the Spitzer Science Center archive and the Infrared Science Archive.
We present several corrections for point source photometry to be applied to data from the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. These corrections are necessary because of characteristics of the IRAC arrays and optics and the way the instrument is calibrated in-flight. When these corrections are applied, it is possible to achieve a ~2% relative photometric accuracy for sources of adequate signal to noise in an IRAC image.
The Infrared Array Camera (IRAC) on the Spitzer Space Telescope is absolutely calibrated by comparing photometry on a set of A stars near the north ecliptic pole to predictions based on ground-based observations and a stellar atmosphere model. The brightness of point sources is calibrated to an accuracy of 3%, relative to models for A star stellar atmospheres, for observations performed and analyzed in the same manner as the calibration stars. This includes corrections for location of the star in the array and the location if the centroid within the peak pixel. Long-term stability of the IRAC photometry was measured by monitoring the brightness of A dwarfs and K giants (near the north ecliptic pole) observed several times per month; the photometry is stable to 1.5% (rms) over a year. Intermediate-time-scale stability of the IRAC photometry was measured by monitoring at least one secondary calibrator (near the ecliptic plane) every 12 hr while IRAC is in nominal operations; the intermediate-term photometry is stable with a 1% dispersion (rms). One of the secondary calibrators was found to have significantly time-variable (5%) mid-infrared emission, with period (7.4 days) matching the optical light curve; it is possibly a Cepheid variable.
In this Letter, we present the initial characterization of extragalactic 24um sources in the Spitzer First Look Survey (FLS) by examining their counterparts at 8um and R-band. The color-color diagram of 24-to-8 vs. 24-to-0.7um is populated with 18,734 sources brighter than the 3sigma flux limit of 110uJy, over an area of 3.7sq.degrees. The 24-to-0.7um colors of these sources span almost 4 orders of magnitudes, while the 24-to-8um colors distribute at least over 2 orders of magnitudes. In addition to identifying ~30% of the total sample with infrared quiescent, mostly low redshift galaxies, we also found that: (1) 23% of the 24um sources (~1200/sq.degrees) have very red 24-to-8 and 24-to-0.7 colors and are probably infrared luminous starbursts with L(IR)>3x10^(11)Lsun at z>1. In particular, 13% of the sample (660/sq.degrees) are 24um detected only, with no detectable emission in either 8um or R-band. These sources are the candidates for being ULIRGs at z>2. (2) 2% of the sample (85/sq.degrees) have colors similar to dust reddened AGNs, like Mrk231 at z~0.6-3. (3) We anticipate that some of these sources with extremely red colors may be new types of sources, since they can not be modelled with any familiar type of spectral energy distribution. We find that 17% of the 24um sources have no detectable optical counterparts brighter than R limit of 25.5mag. Optical spectroscopy of these optical extremely faint 24um sources would be very difficult, and mid-infrared spectroscopy from the Spitzer would be critical for understanding their physical nature (Abridged).
We present Spitzer 70um and 160um observations of the Spitzer extragalactic First Look Survey (xFLS). The data reduction techniques and the methods for producing co-added mosaics and source catalogs are discussed. Currently, 26% of the 70um sample and 49% of the 160um-selected sources have redshifts. The majority of sources with redshifts are star-forming galaxies at z<0.5, while about 5% have infrared colors consistent with AGN. The observed infrared colors agree with the spectral energy distribution (SEDs) of local galaxies previously determined from IRAS and ISO data. The average 160um/70um color temperature for the dust is Td~= 30+/-5 K, and the average 70um/24um spectral index is alpha~= 2.4+/-0.4. The observed infrared to radio correlation varies with redshift as expected out to z~1 based on the SEDs of local galaxies. The xFLS number counts at 70um and 160um are consistent within uncertainties with the models of galaxy evolution, but there are indications that the current models may require slight modifications. Deeper 70um observations are needed to constrain the models, and redshifts for the faint sources are required to measure the evolution of the infrared luminosity function.
Selection of active galactic nuclei (AGN) in the infrared allows the discovery of AGN whose optical emission is extinguished by dust. In this paper, we use the Spitzer Space Telescope First Look Survey (FLS) to assess what fraction of AGN with mid-infrared luminosities comparable to quasars are missed in optical quasar surveys due to dust obscuration. We begin by using the Sloan Digital Sky Survey (SDSS) database to identify 54 quasars within the 4 deg^2 extragalactic FLS. These quasars occupy a distinct region in mid-infrared color space by virtue of their strong, red, continua. This has allowed us to define a mid-infrared color criterion for selecting AGN candidates. About 2000 FLS objects have colors consistent with them being AGN, but most are much fainter in the mid-infrared than the SDSS quasars, which typically have 8 micron flux densities, S(8.0), ~1 mJy. We have investigated the properties of the 43 objects with S(8.0) >= 1 mJy satisfying our AGN color selection. This sample should contain both unobscured quasars, and AGN which are absent from the SDSS survey due to extinction in the optical. After removing 16 known quasars, three probable normal quasars, and eight spurious or confused objects from the initial sample of 43, we are left with 16 objects which are likely to be obscured quasars or luminous Seyfert-2 galaxies. This suggests the numbers of obscured and unobscured AGN are similar in samples selected in the mid-infrared at S(8.0)~1 mJy.