Do you want to publish a course? Click here

GRB 050509b: the elusive optical/nIR/mm afterglow of a short-duration GRB

86   0   0.0 ( 0 )
 Added by Javier Gorosabel
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present multiwavelength (optical/near infrared/millimetre) observations of a short duration gamma-ray burst detected by Swift (GRB 050509b) collected between 0 seconds and ~18.8 days after the event. No optical, near infrared or millimetre emission has been detected in spite of the well localised X-ray afterglow, confirming the elusiveness of the short duration events. We also discuss the possibility of the burst being located in a cluster of galaxies at z= 0.225 or beyond. In the former case, the spectral energy distribution of the neighbouring, potential host galaxy, favours a system harbouring an evolved dominant stellar population (age ~360 Myr), unlike most long duration GRB host galaxies observed so far, i.e. thus giving support to a compact binary merger origin. Any underlying supernova that could be associated with this particular event should have been at least 3 magnitudes fainter than the type Ib/c SN 1998bw and 2.3 magnitudes fainter than a typical type Ia SN.

rate research

Read More

Afterglows of Gamma-Ray Bursts (GRBs) are simple in the most basic model, but can show many complex features. The ultra-long duration GRB 111209A, one of the longest GRBs ever detected, also has the best-monitored afterglow in this rare class of GRBs. We want to address the question whether GRB 111209A was a special event beyond its extreme duration alone, and whether it is a classical GRB or another kind of high-energy transient. The afterglow may yield significant clues. We present afterglow photometry obtained in seven bands with the GROND imager as well as in further seven bands with the UVOT telescope on-board the Neil Gehrels Swift Observatory. The light curve is analysed by multi-band modelling and joint fitting with power-laws and broken power-laws, and we use the contemporaneous GROND data to study the evolution of the spectral energy distribution. We compare the optical afterglow to a large ensemble we have analysed in earlier works, and especially to that of another ultra-long event, GRB 130925A. We furthermore undertake a photometric study of the host galaxy. We find a strong, chromatic rebrightening event at approx 0.8 days after the GRB, during which the spectral slope becomes redder. After this, the light curve decays achromatically, with evidence for a break at about 9 days after the trigger. The afterglow luminosity is found to not be exceptional. We find that a double-jet model is able to explain the chromatic rebrightening. The afterglow features have been detected in other events and are not unique. The duration aside, the GRB prompt emission and afterglow parameters of GRB 111209A are in agreement with the known distributions for these parameters. While the central engine of this event may differ from that of classical GRBs, there are multiple lines of evidence pointing to GRB 111209A resulting from the core-collapse of a massive star with a stripped envelope.
The CCD magnitudes in Johnson $B,V$ and Cousins $R$ and $I$ photometric passbands are determined for the bright long duration GRB 021004 afterglow from 2002 October 4 to 16 starting $sim$ 3 hours after the $gamma-$ray burst. Light curves of the afterglow emission in $B$,$V$,$R$ and $I$ passbands are obtained by combining these measurements with other published data. The earliest optical emission appears to originate in a revese shock. Flux decay of the afterglow shows a very uncommon variation relative to other well-observed GRBs. Rapid light variations, especially during early times ($Delta t < 2$ days) is superposed on an underlying broken power law decay typical of a jetted afterglow. The flux decay constants at early and late times derived from least square fits to the light curve are $0.99pm0.05$ and $2.0pm0.2$ respectively, with a jet break at around 7 day. Comparison with a standard fireball model indicates a total extinction of $E(B-V)=0.20$ mag in the direction of the burst. Our low-resolution spectra corrected for this extinction provide a spectral slope $beta = 0.6pm0.02$. This value and the flux decay constants agree well with the electron energy index $psim 2.27$ used in the model. The derived jet opening angle of about $7^{circ}$ implies a total emitted gamma-ray energy $E_{gamma} = 3.5times10^{50}$ erg at a cosmological distance of about 20 Gpc. Multiwavelength observations indicate association of this GRB with a star forming region, supporting the case for collapsar origin of long duration GRBs.
We report optical and near-infrared broad band observations of the short-duration GRB 050724 host galaxy, used to construct its spectral energy distribution (SED). Unlike the hosts of long-duration gamma-ray bursts (GRBs), which show younger stellar populations, the SED of the GRB 050724 host galaxy is optimally fitted with a synthetic elliptical galaxy template based on an evolved stellar population (age ~2.6 Gyr). The SED of the host is difficult to reproduce with non-evolving metallicity templates. In contrast, if the short GRB host galaxy metallicity enrichment is considered, the synthetic templates fit the observed SED satisfactorily. The internal host extinction is low (A_v ~< 0.4 mag) so it cannot explain the faintness of the afterglow. This short GRB host galaxy is more massive (~5x10^10 Mo) and luminous (~1.1 L*) than most of the long-duration GRB hosts. A statistical comparison based on the ages of short- and long-duration GRB host galaxies strongly suggests that short-duration GRB hosts contain, on average, older progenitors. These findings support a different origin for short- and long-duration GRBs.
It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than ~2 s), which ultimately linked them with energetic Type Ic supernovae, came from the discovery of their long-lived X-ray and optical afterglows, when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude ~23) associated with a short burst; GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.
104 - K. Pedersen 2005
The first arcsecond localization of a short gamma-ray burst, GRB 050509B, has enabled detailed studies of a short burst environment. We here report on studies of the environment of GRB 050509B using the Swift X-ray Telescope (XRT). The XRT error circle of the burst overlaps with an elliptical galaxy in the cluster of galaxies ZwCl 1234.0+02916. Based on the measured X-ray flux of the cluster we estimate that the probability for a chance superposition of GRB 050509B and a cluster at least as X-ray bright as this cluster is $< 2times 10^{-3}$, presenting the first strong case of a short burst located in a cluster of galaxies. We also consider the case for GRB 050509B being located behind ZwCl 1234.0+02916 and gravitationally lensed. From the velocity dispersion of the elliptical galaxy and the temperature of hot intracluster gas, we model the mass distribution in the elliptical galaxy and the cluster, and calculate the gravitational lensing magnification within the XRT error circle. We find that, if GRB050509B would be positioned significantly behind the cluster, it is most likely magnified by a factor less than two, but that the burst could be strongly lensed if it is positioned within 2 arcsec of the center of the bright elliptical galaxy. Further mapping of arcsecond size short burst error boxes is a new promising route to determine the spatial distribution of old stars throughout the Universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا