No Arabic abstract
Optical and near-infrared spectroscopic observations of the fast nova V1494 Aquilae 1999 #2 covering various phases -- early decline, transition and nebular -- during the first eighteen months of its post-outburst evolution are presented in this paper. During this period, the nova evolved in the P_fe P_fe^o C_o spectral sequence. The transition from an optically thick wind to a polar blob - equatorial ring geometry is seen in the evolution of the spectral line profiles. There is evidence of density and temperature stratification in the ejecta. Physical conditions in the ejecta have been estimated based on our observations.
Low- and medium resolution spectra of the fast nova, Nova (V1494) Aql 1999 No.2 obtained approximately 6, 7, 19 and 28 days after the maximum brightness are presented and discussed. The spectrum covering the whole optical range at day 6 shows the principal plus diffuse-enhanced spectrum. The presence of strong Fe II multiplets with P-Cyg profiles suggest that V1494 Aql belongs to the ``Fe II class defined by Williams (1992). The medium-resolution profiles (lambda/Delta lambda approx 7000) of the Hgamma and Hdelta lines show well-defined sharp absorption features with the same radial velocities, while the Halpha split into two distinct emission peaks in the last two spectra (Delta t=19 and 28 days). The observed behaviour suggests an expanding equatorial ring with possible small-scale clumpiness in the nova shell. The visual lightcurve is used to deduce M_V by the maximum magnitude versus rate of decline relationship. The resulting parameters are: t_2=6.6+/-0.5 days, t_3=16+/-0.5 days, M_V=-8.8+/-0.2 mag. Adopting this value, a distance d=3.6+/-0.3 kpc is determined.
Near Infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust forming phases during the first $sim$90 days after its discovery. The nova is highly reddened due to interstellar extinction. Based solely on the nature of NIR spectrum we are able to classify the nova to be of the Fe II class. The distance and extinction to the nova are estimated to be 6.1 $pm$ 0.5 kpc and $A_{rm v}$ $sim$ 9.02 respectively. Lower limits of the electron density, emission measure and ionized ejecta mass are made from a Case B analysis of the NIR Brackett lines while the neutral gas mass is estimated from the optical [OI] lines. We discuss the cause for a rapid strengthening of the He I 1.0830 $mu$m line during the early stages. V1831 Aql formed a modest amount of dust fairly early ($sim$ 19.2 days after discovery); the dust shell is not seen to be optically thick. Estimates are made of the dust temperature, dust mass and grain size. Dust formation commences around day 19.2 at a condensation temperature of 1461 $pm$ 15 K, suggestive of a carbon composition, following which the temperature is seen to gradually decrease to 950K. The dust mass shows a rapid initial increase which we interpret as being due to an increase in the number of grains, followed by a period of constancy suggesting the absence of grain destruction processes during this latter time. A discussion is made of the evolution of these parameters, including certain peculiarities seen in the grain radius evolution.
We present low- and medium resolution spectra of the recurrent nova CI Aquilae taken at 14 epochs in May and June, 2000. The overall appearance is similar to other U Sco-type recurrent novae (U Sco, V394 CrA). Medium resolution (R=7000-10000) hydrogen and iron profiles suggest an early expansion velocity of 2000-2500 km/s. The Halpha evolution is followed from Dt = -0.6 d to +53 d, starting from a nearly Gaussian shape to a double peaked profile through strong P-Cyg profiles. The interstellar component of the sodium D line and two diffuse interstellar bands put constraints on the interstellar reddening which is estimated to be E(B-V)=0.85pm0.3. The available visual and CCD-V observations are used to determine t0,t2 and t3. The resulting parameters are: t0=2451669.5pm0.1, t2=30pm1 d, t3=36pm1 d. The recent lightcurve is found to be generally similar to that observed in 1917 with departures as large as 1-2 mag in certain phases. This behaviour is also typical for the U Sco subclass.
We present optical and near-infrared (NIR) photometry of a classical nova, V2362 Cyg (= Nova Cygni 2006). V2362 Cyg experienced a peculiar rebrightening with a long duration from 100 to 240 d after the maximum of the nova. Our multicolor observation indicates an emergence of a pseudophotosphere with an effective temperature of 9000 K at the rebrightening maximum. After the rebrightening maximum, the object showed a slow fading homogeneously in all of the used bands for one week. This implies that the fading just after the rebrightening maximum ( less or equal 1 week ) was caused by a slowly shrinking pseudophotosphere. Then, the NIR flux drastically increased, while the optical flux steeply declined. The optical and NIR flux was consistent with blackbody radiation with a temperature of 1500 K during this NIR rising phase. These facts are likely to be explained by dust formation in the nova ejecta. Assuming an optically thin case, we estimate the dust mass of 10^(-8) -- 10^(-10) M_solar, which is less than those in typical dust-forming novae. These results support the senario that a second, long-lasting outflow, which caused the rebrightening, interacted with a fraction of the initial outflow and formed dust grains.
We present radio light curves and spectra of the classical nova V1723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of V1723 Aql span 1-37 GHz in frequency, and we report on data from 14-175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of V1723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.