No Arabic abstract
We present a detailed study of the nuclear structure of the highly polarized broad absorption line quasar, Mrk 231, through a multiwavelength campaign of Chandra observations, optical spectroscopy, optical spectropolarimetry, and imaging polarimetry. This campaign was designed to extend the 40 ks Chandra study of Gallagher et al. and the optical and UV spectropolarimetric study of Smith et al. to probe variability on multiple time scales. As direct emission from the nucleus is heavily obscured at optical through X-ray wavelengths, the detailed study of scattered emission has lead to insights into the stratified and complex central region of this active galaxy. Though significant continuum variability is not detected in any of the three new 40 ks Chandra observations, we investigate FeKalpha emission features in the individual and combined spectra. Comparing echelle spectra of the NaI D absorption lines with the literature, we show that one system disappeared in 2000 only to reappear in later epochs. Notably, we detect a large decrease in polarization across the entire optical spectrum of Mrk 231 from 1995 to 2003. Though the polarization fraction fell, e.g., from 4% to 3% at about 6000 Angstroms, the polarization position angle spectrum remained unchanged. The optical polarization behavior is consistent with a decrease in the flux scattered by circumnuclear material on spatial scales where the broad-line region is resolved by the scattering material. Ultraviolet imaging polarimetry of Mrk 231 by HST sets an upper limit on the distance between the active nucleus and the scattering regions of <20 pc.
The Ultra Luminous InfraRed Galaxy Mrk 231 reveals up to seven rotational lines of water (H2O) in emission, including a very high-lying (E_{upper}=640 K) line detected at a 4sigma level, within the Herschel/SPIRE wavelength range, whereas PACS observations show one H2O line at 78 microns in absorption, as found for other H2O lines previously detected by ISO. The absorption/emission dichotomy is caused by the pumping of the rotational levels by far-infrared radiation emitted by dust, and subsequent relaxation through lines at longer wavelengths, which allows us to estimate both the column density of H2O and the general characteristics of the underlying far-infrared continuum source. Radiative transfer models including excitation through both absorption of far-infrared radiation emitted by dust and collisions are used to calculate the equilibrium level populations of H2O and the corresponding line fluxes. The highest-lying H2O lines detected in emission, with levels at 300-640 K above the ground state, indicate that the source of far-infrared radiation responsible for the pumping is compact (radius=110-180 pc) and warm (T_{dust}=85-95 K), accounting for at least 45% of the bolometric luminosity. The high column density, N(H2O)~5x10^{17} cm^{-2}, found in this nuclear component, is most probably the consequence of shocks/cosmic rays, an XDR chemistry, and/or an undepleted chemistry where grain mantles are evaporated. A more extended region, presumably the inner region of the 1-kpc disk observed in other molecular species, could contribute to the flux observed in low-lying H2O lines through dense hot cores, and/or shocks. The H2O 78 micron line observed with PACS shows hints of a blue-shifted wing seen in absorption, possibly indicating the occurrence of H2O in the prominent outflow detected in OH (Fischer et al., this volume).
We present MERLIN observations of OH maser and radio continuum emission from the Ultra Luminous IR Galaxy Markarian 231. The 1665- and 1667-MHz transitions have a combined velocity extent of 720 km/s and show a similar position-velocity structure including a gradient of 1.7 km/s/pc from NW to SE along the 420-pc major axis, steeper in the inner few tens of pc. The maser distribution is modelled as a torus rotating about an axis inclined at ~45deg. We estimate the enclosed mass density to be 320(90) Msun in a flattened distribution, including a central unresolved mass of </=8E+06 Msun. All the maser emission is projected against a region with a radio continuum brightness temperature >/=1E+05 K, giving a maser gain of </=2.2. The 1667:1665-MHz line ratio is close to the LTE ratio of 1.8 consistent with radiatively pumped, unsaturated masers. The size of individual masing regions is in the range 0.25-4 pc with a covering factor close to unity. There are no very bright compact masers, in contrast to galaxies such as the Seyfert 2 Markarian 273 where the masing torus is viewed nearer edge-on. The comparatively modest maser amplification seen from Markarian 231 is consistent with its classification as a Seyfert 1. Most of the radio continuum emission on 50-500 pc scales is probably of starburst origin but the compact peak is 0.4 per cent polarized by a magnetic field running north-south, similar to the jet direction on these scales. There is no close correlation between maser and continuum intensity. Comparisons with other data show that the jet changes direction close the nucleus and suggest that the sub-kpc disc hosting the masers and starburst activity is severely warped.
The oxygen-bearing molecular ions OH+, H2O+, and H3O+ are key species that probe the ionization rate of (partially) molecular gas that is ionized by X-rays and cosmic rays permeating the interstellar medium. We report Herschel far-infrared and submillimeter spectroscopic observations of OH+ in Mrk 231, showing both ground-state P-Cygni profiles, and excited line profiles with blueshifted absorption wings extending up to ~1000 km s^{-1}. In addition, OH+ probes an excited component peaking at central velocities, likely arising from the torus probed by the OH centimeter-wave megamaser. Four lines of H2O+ are also detected at systemic velocities, but H3O+ is undetected. Based on our earlier OH studies, we estimate an abundance ratio of OH/OH+~5-10 for the outflowing components and ~20 for the torus, and an OH+ abundance relative to H nuclei of ~>10^{-7}. We also find high OH+/H2O+ and OH+/H3O+ ratios, both are ~>4 in the torus and ~>10-20 in the outflowing gas components. Chemical models indicate that these high OH+ abundances relative to OH, H2O+, and H3O+ are characteristic of gas with a high ionization rate per unit density, zeta/n_H~(1-5)x10^{-17} cm^3 s^{-1} and ~(1-2)x10^{-16} cm^3 s^{-1} for the above components, respectively, and an ionization rate of zeta~(0.5-2)x10^{-12} s^{-1}. X-rays appear to be unable to explain the inferred ionization rate, and thus we suggest that low-energy (10-400 MeV) cosmic-rays are primarily responsible for the ionization with dot{M}_{CR}~0.01 M_{sun} yr^{-1} and dot{E}_{CR}~10^{44} erg s^{-1}, the latter corresponding to 1% of the AGN luminosity and similar to the energetics of the molecular outflow. We suggest that cosmic-rays accelerated in the forward shock associated with the molecular outflow are responsible for the ionization, as they diffuse through the outflowing molecular phase downstream.
We report the results from a 2011 Suzaku observation of the nearby low-ionization BAL quasar/ULIRG Markarian 231. These data reveal that the X-ray spectrum has undergone a large variation from the 2001 XMM-Newton and BeppoSAX observations. We interpret this finding according to a scenario whereby the X-ray continuum source is obscured by a two-component partial-covering absorber with NH ~10^22 and ~10^24 cm^-2, respectively. The observed spectral change is mostly explained by a progressive appearance of the primary continuum at <10 keV due to the decrease of the covering fraction of the denser absorption component. The properties of the X-ray obscuration in Mrk 231 match well with those of the X-ray shielding gas predicted by the theoretical models for an efficient radiatively-driven acceleration of the BAL wind. In particular, the X-ray absorber might be located at the extreme base of the outflow. We measure a 2-10 keV luminosity of L(2-10) = 3.3 x 10^43 erg s^-1 for the 2011 data set, i.e. an increase of 30% with respect to the 2001 value.
We have obtained a moderately long (100 kilosecond) ASCA observation of the Seyfert 1 galaxy Markarian 231, the most luminous of the local ultraluminous infrared galaxy (ULIRG) population. In the best-fitting model we do not see the X-ray source directly; the spectrum consists of a scattered power-law component and a reflection component, both of which have been absorbed by a column N_H approx 3 X 10^(22)/cm^2. About 3/4 of the observed hard X-rays arise from the scattered component, reducing the equivalent width of the iron K alpha line. The implied ratio of 1-10 keV X-ray luminosity to bolometric luminosity, L_x/L_bol sim 2%, is typical of Sy 1 galaxies and radio-quiet QSOs of comparable bolometric luminosities, and indicates that the bolometric luminosity is dominated by the AGN. Our estimate of the X-ray luminosity also moves Mrk 231 in line with the correlations found for AGN with extremely strong Fe II emission. A second source separated by about 2 arcminutes is also clearly detected, and contributes about 25% of the total flux.