Do you want to publish a course? Click here

A UV+IR history of star formation at 0<z<1

96   0   0.0 ( 0 )
 Added by Emeric Le Floc'h
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The combination of both contributions from the observed UV emission and the absorbed radiations reprocessed in the infrared represents the ideal approach to constrain the activity of massive star formation in galaxies. Using recent results from GALEX and Spitzer, we compare the evolutions of the UV and IR energy densities with redshift as well as their contributions to the star formation history at 0<z<1. We find that the comoving IR luminosity is characterized by a much faster evolution than seen in the UV. Our results also indicate that ~70% of the star-forming activity at z~1 is produced by the so-called IR-luminous sources (L_IR > 10^11 L_sol).

rate research

Read More

Using new homogeneous LFs in the FUV and in the FIR Herschel/PEP and Herschel/HerMES, we study the evolution of the dust attenuation with redshift. With this information in hand, we are able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density SFRD_TOT. By integrating SFRD_TOT, we follow the mass building and analyze the redshift evolution of the stellar mass density (SMD). This letter aims at providing a complete view of star formation from the local universe to z = 4 and, using assumptions on earlier star formation history, compares this evolution to what was known before in an attempt to draw a homogeneous picture of the global evolution of star formation in galaxies. The main conclusions of this letter are: 1) the dust attenuation A_FUV is found to increase from z = 0 to z sim 1.2 and then starts to decrease up to our last data point at z = 3.6; 2) the estimated SFRD confirms published results up to z = 2. At z > 2, we observe either a plateau or a small increase up to z = 3 and then a likely decrease up to z = 3.6; 3) the peak of A_FUV is delayed with respect to the plateau of SFRD_TOT and a likely origin might be found in the evolution of the bright ends of the FUV and FIR LFs; 4) using assumptions (namely exponential rise and linear rise with time) for the evolution of the star formation density from z = 3.6 to z_form = 10, we integrate SFRD_TOT and find a good agreement with the published SMDs.
We investigate whether the mean star formation activity of star-forming galaxies from z=0 to z=0.7 in the GOODS-S field can be reproduced by simple evolution models of these systems. In this case, such models might be used as first order references for studies at higher z to decipher when and to what extent a secular evolution is sufficient to explain the star formation history in galaxies. We selected star-forming galaxies at z=0 and at z=0.7 in IR and in UV to have access to all the recent star formation. We focused on galaxies with a stellar mass ranging between 10^{10} and 10^{11} M_sun for which the results are not biased by the selections. We compared the data to chemical evolution models developed for spiral galaxies and originally built to reproduce the main characteristics of the Milky Way and nearby spirals without fine-tuning them for the present analysis. We find a shallow decrease in the specific star formation rate (SSFR) when the stellar mass increases. The evolution of the SSFR characterizing both UV and IR selected galaxies from z=0 to z=0.7 is consistent with the models built to reproduce the present spiral galaxies. There is no need to strongly modify of the physical conditions in galaxies to explain the average evolution of their star formation from z=0 to z=0.7. We use the models to predict the evolution of the star formation rate and the metallicity on a wider range of redshift and we compare these predictions with the results of semi-analytical models.
54 - D. Pierini MPE , Garching 2003
We investigate if dust emission in the far-IR continuum provides a robust estimate of star formation rate (SFR) for a nearby, normal late-type galaxy. We focus on the ratio of the 40--1000 micron luminosity (L_dust) to the far-UV (0.165 micron luminosity, which is connected to recent episodes of star formation. Available total photometry at 0.165, 60, 100 and 170 micron limits the statistics to 30 galaxies, which, however, span a large range in observed (and, thus, attenuated by dust) K-band (2.2 micron) luminosity, morphology and inclination (i). This sample shows that the ratio of L_dust to the observed far-UV luminosity depends not only on i, as expected, but also on morphology and, in a tighter way, on observed K-band luminosity. We find that L_dust/L_FUV is proportional to e^(-tau_K) (alpha+0.62) (L_K)^(0.62), where L_FUV and L_K are the unattenuated stellar luminosities in far-UV and K, respectively, and alpha is the ratio of the attenuation optical depths at 0.165 micron (tau_FUV) and 2.2 micron (tau_K). This relation is to zeroth order independent of i and morphology. It may be further expressed as L_dust/L_FUV proportional to (L_K)^delta, where delta = 0.61 - 0.02 alpha, under the observationally-motivated assumption that, for an average inclination, e^(-tau_K) is proportional to (L_K)^(-0.02). We adopt calculations of two different models of attenuation of stellar light by internal dust to derive solid-angle averaged values of alpha. We find that delta is positive and decreases towards 0 from the more luminous to the less luminous galaxies. This means that there is no universal ratio of far-IR luminosity to unattenuated far-UV luminosity for nearby, normal late-type galaxies. (Abridged)
We present Lightning, a new spectral energy distribution (SED) fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. Lightning consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive FUV-to-FIR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the last 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover a SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51, and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars, and that the IR emission from M51b is primarily powered by stars older than 5 Gyr.
291 - E.Le Floch 2005
We analyze a sample of ~2600 MIPS/Spitzer 24mic sources brighter than ~80muJy and located in the Chandra Deep Field South to characterize the evolution of the comoving infrared (IR) energy density of the Universe up to z~1. Using published ancillary optical data we first obtain a nearly complete redshift determination for the 24mic objects associated with R<24 counterparts at z<1. We find that the 24mic population at 0.5<z<1 is dominated by ``Luminous Infrared Galaxies (i.e., 10^11 L_sol < L_IR < 10^12 L_sol), the counterparts of which appear to be also luminous at optical wavelengths and tend to be more massive than the majority of optically-selected galaxies. We finally derive 15mic and total IR luminosity functions (LFs) up to z~1. In agreement with the previous results from ISO and SCUBA and as expected from the MIPS source number counts, we find very strong evolution of the contribution of the IR-selected population with lookback time. Pure evolution in density is firmly excluded by the data, but we find considerable degeneracy between strict evolution in luminosity and a combination of increases in both density and luminosity (L*_IR prop. to (1+z)^{3.2_{-0.2}^{+0.7}}, Phi*_IR prop. to (1+z)^{0.7_{-0.6}^{+0.2}}). Our results imply that the comoving IR energy density of the Universe evolves as (1+z)^(3.9+/-0.4) up to z~1 and that galaxies luminous in the infrared (i.e., L_IR > 10^11 L_IR) are responsible for 70+/-15% of this energy density at z~1. Taking into account the contribution of the UV luminosity evolving as (1+z)^~2.5, we infer that these IR-luminous sources dominate the star-forming activity beyond z~0.7. The uncertainties affecting these conclusions are largely dominated by the errors in the k-corrections used to convert 24mic fluxes into luminosities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا