Do you want to publish a course? Click here

Red clump distances to the inner Galactic structures

66   0   0.0 ( 0 )
 Added by Carine Babusiaux
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The least well known structure of the Galaxy is its central region, because of the high extinction, the crowding and the confusion between disk and bulge sources along the line of sight. We show how the structure of the inner Galaxy and the dust distribution can be strongly constrained by using red clump stars as distance indicator. The results of this method applied on the deep near-infrared survey of the inner Galactic bulge made with the Cambridge Infrared Survey Instrument (CIRSI) are presented.



rate research

Read More

291 - S. S. Shan , H. Zhu , W. W. Tian 2018
We carry out a project to independently measure the distances of supernova remnants (SNRs) in the first quadrant of the Galaxy. In this project, red clump (RC) stars are used as standard candles and extinction probes to build the optical extinction (A$_V$) - distance(D) relation in each direction of extinction-known SNRs. 15 SNRs distances are well determined. Among them, the distances of G65.8-0.5, G66.0-0.0 and G67.6+0.9 are given for the first time. We also obtain 32 upper/lower limits of distances, and the distances to G5.7-0.1, G15.1-1.6, G28.8+1.5 and G78.2+2.1 are constrained. Most of the distances measured by the RC method are consistent with previous results. The RC method provides an independent access to the distances of SNRs.
75 - D. Bersier 2000
I determine a distance to the Fornax dwarf galaxy using stars in the red clump and at the tip of the red giant branch. They are in very good agreement, with $mu_0 = 20.66 mag$. Comparing the magnitudes of the tip of the red giant branch and of the red clump in Fornax, Carina and the Magellanic Clouds, I propose a possible solution to the problem of the discrepancy between these two types of distance measurements.
104 - Yang Huang 2020
We present a sample of $sim$ 140,000 primary red clump (RC) stars of spectral signal-to-noise ratios higher than 20 from the LAMOST Galactic spectroscopic surveys, selected based on their positions in the metallicity-dependent effective temperature--surface gravity and color--metallicity diagrams, supervised by high-quality $Kepler$ asteroseismology data. The stellar masses and ages of those stars are further determined from the LAMOST spectra, using the Kernel Principal Component Analysis method, trained with thousands of RCs in the LAMOST-$Kepler$ fields with accurate asteroseismic mass measurements. The purity and completeness of our primary RC sample are generally higher than 80 per cent. For the mass and age, a variety of tests show typical uncertainties of 15 and 30 per cent, respectively. Using over ten thousand primary RCs with accurate distance measurements from the parallaxes of Gaia DR2, we re-calibrate the $K_{rm s}$ absolute magnitudes of primary RCs by, for the first time, considering both the metallicity and age dependencies. With the the new calibration, distances are derived for all the primary RCs, with a typical uncertainty of 5--10 per cent, even better than the values yielded by the Gaia parallax measurements for stars beyond 3--4 kpc. The sample covers a significant volume of the Galactic disk of $4 leq R leq 16$ kpc, $|Z| leq 5$ kpc, and $-20 leq phi leq 50^{circ}$. Stellar atmospheric parameters, line-of-sight velocities and elemental abundances derived from the LAMOST spectra and proper motions of Gaia DR2 are also provided for the sample stars. Finally, the selection function of the sample is carefully evaluated in the color-magnitude plane for different sky areas. The sample is publicly available.
Large pristine samples of red clump stars are highly sought after given that they are standard candles and give precise distances even at large distances. However, it is difficult to cleanly select red clumps stars because they can have the same T$_{mathrm{eff}}$ and log $g$ as red giant branch stars. Recently, it was shown that the asteroseismic parameters, $rm{Delta}$P and $rm{Delta u}$, which are used to accurately select red clump stars, can be derived from spectra using the change in the surface carbon to nitrogen ratio ([C/N]) caused by mixing during the red giant branch. This change in [C/N] can also impact the spectral energy distribution. In this study, we predict the $rm{Delta}$P, $rm{Delta u}$, T$_{mathrm{eff}}$ and log $g$ using 2MASS, AllWISE, gaia, and Pan-STARRS data in order to select a clean sample of red clump stars. We achieve a contamination rate of $sim$20%, equivalent to what is achieved when selecting from T$_{mathrm{eff}}$ and log $g$ derived from low resolution spectra. Finally, we present two red clump samples. One sample has a contamination rate of $sim$ 20% and $sim$ 405,000 red clump stars. The other has a contamination of $sim$ 33% and $sim$ 2.6 million red clump stars which includes $sim$ 75,000 stars at distances $>$ 10 kpc. For |b|>30 degrees we find $sim$ 15,000 stars with contamination rate of $sim$ 9%. The scientific potential of this catalog for studying the structure and formation history of the Galaxy is vast given that it includes millions of precise distances to stars in the inner bulge and distant halo where astrometric distances are imprecise.
On the basis of the near infrared observations of bulge red clump stars near the Galactic center, we have determined the galactocentric distance to be R_0 = 7.52 +- 0.10 (stat) +- 0.35 (sys) kpc. We observed the red clump stars at |l| < 1.0 deg and 0.7 deg < |b| < 1.0 deg with the IRSF 1.4 m telescope and the SIRIUS camera in the H and Ks bands. After extinction and population corrections, we obtained (m - M)_0 = 14.38 +- 0.03 (stat) +- 0.10 (sys). The statistical error is dominated by the uncertainty of the intrinsic local red clump stars luminosity. The systematic error is estimated to be +- 0.10 including uncertainties in extinction and population correction, zero-point of photometry, and the fitting of the luminosity function of the red clump stars. Our result, R_0 = 7.52 kpc, is in excellent agreement with the distance determined geometrically with the star orbiting the massive black hole in the Galactic center. The recent result based on the spatial distribution of globular clusters is also consistent with our result. In addition, our study exhibits that the distance determination to the Galactic center with the red clump stars, even if the error of the population correction is taken into account, can achieve an uncertainty of about 5%, which is almost the same level as that in recent geometrical determinations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا