Do you want to publish a course? Click here

An Infrared Coronagraphic Survey for Substellar Companions

58   0   0.0 ( 0 )
 Added by Patrick J. Lowrance
 Publication date 2005
  fields Physics
and research's language is English
 Authors P.Lowrance




Ask ChatGPT about the research

We have used the F160W filter (1.4-1.8 um) and the coronagraph on the Near-InfraRed Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST) to survey 45 single stars with a median age of 0.15 Gyr, an average distance of 30 pc, and an average H-magnitude of 7 mag. For the median age we were capable of detecting a 30 M_Jup companion at separations between 15 and 200 AU. A 5 M_Jup object could have been detected at 30 AU around 36% of our primaries. For several of our targets that were less than 30 Myr old, the lower mass limit was as low as a Jupiter mass, well into the high mass planet region. Results of the entire survey include the proper motion verification of five low-mass stellar companions, two brown dwarfs (HR7329B and TWA5B) and one possible brown dwarf binary (Gl 577B/C).



rate research

Read More

We present the technique and results of a survey of stars within 8 pc of the Sun with declinations $bfdelta > -35arcdeg$ (J2000.00). The survey, designed to find without color bias faint companions, consists of optical coronagraphic images of the 1arcmin field of view centered on each star and infrared direct images with a 32asc field of view. The images were obtained through the optical Gunn $r$ and $z$ filters and the infrared J and K filters. The survey achieves sensitivities up to four absolute magnitudes fainter than the prototype brown dwarf, Gliese 229B. However, this sensitivity varies with the seeing conditions, the intrinsic brightness of the star observed and the angular distance from the star. As a result we tabulate sensitivity limits for each star in the survey. We used the criterion of common proper motion to distinguish companions and to determine their luminosities. In addition to the brown dwarf Gliese 229B, we have identified 6 new stellar companions of the sample stars. Since the survey began, accurate trigonometric parallax measurements for most of the stars have become available. As a result some of the stars we originally included should no longer be included in the 8 pc sample. In addition, the 8 pc sample is incomplete at the faint end of the main sequence complicating our calculation of the binary fraction of brown dwarfs. We assess the sensitivity of the survey to stellar companions and to brown dwarf companions of various masses and ages.
Context: Only two planetary systems around old ms-pulsars are currently known. Young radio pulsars and radio-quiet neutron stars cannot be covered by the usually-applied radio pulse timing technique. However, finding substellar companions around these neutron stars would be of great interest -- not only because of the companions possible exotic formation but also due to the potential access to neutron star physics. Aims: We investigate the closest young neutron stars to search for substellar companions around them. Methods: Young, thus warm substellar companions are visible in the Near Infrared while the neutron star itself is much fainter. Four young neutron stars are moving fast enough to enable a common proper motion search for substellar companions within few years. Results. For Geminga, RX J0720.4-3125, RX J1856.6-3754, and PSR J1932+1059 we did not find any co-moving companion down to 12, 15, 11, 42 Jupiter masses for assumed ages of 1, 1, 1, 3.1 Myrs and distances of 250, 361, 167, 361 pc, respectively. Near Infrared limits are presented for these four as well as five other neutron stars for which we currently have only observations at one epoch. Conclusions: We conclude that young isolated neutron stars rarely have brown dwarf companions.
Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ~5 AU in the mass range of ~10 - 80 M$_{text{Jup}}$. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help asses the reality of the desert and provide insight to the formation and evolution of these objects. Here we present 10 new brown dwarf and two low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III (SDSS-III). These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional (UF2D) pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ~13 to 76 M$_{text{Jup}}$ and have orbital radii of less than 1 AU. The two stellar companions have minimum masses of ~98 and 100 M$_{text{Jup}}$. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 $pm$ 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ~300 days to be ~0.56%.
We report the detections of substellar companions orbiting around seven evolved intermediate-mass stars from precise Doppler measurements at Okayama Astrophysical Observatory. o UMa (G4 II-III) is a giant with a mass of 3.1 M_sun and hosts a planet with minimum mass of m_2sini=4.1 M_J in an orbit with a period P=1630 d and an eccentricity e=0.13. This is the first planet candidate (< 13 M_J) ever discovered around stars more massive than 3 M_sun. o CrB (K0 III) is a 2.1 M_sun giant and has a planet of m_2sini=1.5 M_J in a 187.8 d orbit with e=0.19. This is one of the least massive planets ever discovered around ~2 M_sun stars. HD 5608 (K0 IV) is an 1.6 M_sun subgiant hosting a planet of m_2sini=1.4 M_J in a 793 d orbit with e=0.19. The star also exhibits a linear velocity trend suggesting the existence of an outer, more massive companion. 75 Cet (G3 III:) is a 2.5 M_sun giant hosting a planet of m_2sini=3.0 M_J in a 692 d orbit with e=0.12. The star also shows possible additional periodicity of about 200 d and 1880 d with velocity amplitude of ~7--10 m/s, although these are not significant at this stage. nu Oph (K0 III) is a 3.0 M_sun giant and has two brown-dwarf companions of m_2sini= 24 M_J and 27 M_J, in orbits with P=530.3 d and 3190 d, and e=0.126 and 0.17, respectively, which were independently announced by Quirrenbach et al. (2011). The ratio of the periods is close to 1:6, suggesting that the companions are in mean motion resonance. We also independently confirmed planets around k CrB (K0 III-IV) and HD 210702 (K1 IV), which had been announced by Johnson et al. (2008) and Johnson et al. (2007a), respectively. All of the orbital parameters we obtained are consistent with the previous results.
102 - M. Willson , S. Kraus , J. Kluska 2016
Transitional discs are a class of circumstellar discs around young stars with extensive clearing of dusty material within their inner regions on 10s of au scales. One of the primary candidates for this kind of clearing is the formation of planet(s) within the disc that then accrete or clear their immediate area as they migrate through the disc. Our sample included eight transitional discs. Using the Keck/NIRC2 instrument we utilised the Sparse Aperture Masking (SAM) interferometry technique to search for asymmetries indicative of ongoing planet formation. We searched for close-in companions using both model fitting and interferometric image reconstruction techniques. Using simulated data, we derived diagnostics that helped us to distinguish between point sources and extended asymmetric disc emission. In addition, we investigated the degeneracy between the contrast and separation that appear for marginally resolved companions. We found FP Tau to contain a previously unseen disc wall, and DM Tau, LkHa 330, and TW Hya to contain an asymmetric signal indicative of point source-like emission. We placed upper limits on the contrast of a companion in RXJ1842.9-3532 and V2246 Oph. We ruled the asymmetry signal in RXJ1615.3-3255 and V2062 Oph to be false positives. In the cases where our data indicated a potential companion we computed estimates for the value of $M_c dot M_c$ and found values in the range of $10^{-5} - 10^{-3} M^2_J yr^{-1}$. We found significant asymmetries in four targets. Of these, three were consistent with companions. We resolved a previously unseen gap in the disc of FP Tau extending inwards from approximately 10 au.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا