No Arabic abstract
We perform three dimensional hydrodynamical simulations of a moving substructure in a cluster of galaxies. We investigate dynamical evolution of the intracluster medium (ICM) in and around the substructure moving radially in the larger clusters gravitational potential, and its observational consequences. After the substructure passes the larger clusters center, a bow shock and clear contact discontinuity form in front of it. The contact discontinuity looks like a sharp cold front in the X-ray image synthesized from the simulation results. This agrees with a structure found in 1E 0657-56. The flow structure remains laminar before the first turnaround because the ram-pressure stripping is dominant over the development of Kelvin-Helmholtz instabilities on the boundary between the substructure and the ambient ICM. When a subcluster oscillates radially around the larger clusters center, both Kelvin-Helmholtz and Rayleigh-Taylor instabilities develop well and the flow structure becomes highly turbulent. Around the turnaround, the subclusters cold gas is pushed out of its potential well. Therefore, the cold gas component appears to be in front of the subcluster. A relatively blunt cold front appears in the simulated X-ray image because the contact discontinuity is perturbed by Rayleigh-Taylor instabilities. This can explain the ICM structure found in A168.
Clusters of galaxies form through major merger and/or absorption of smaller groups. In fact, some characteristic structures such as cold fronts, which are likely relevant to moving substructures, are found by {it Chandra}. It is expected that moving substructures generate turbulence in the intracluster medium (ICM). Such turbulence probably plays a crucial role in mixture and transport of gas energy and heavy elements, and particle acceleration. The {it Astro-E2} satellite, which is planned to be launched in 2005, will detect broadened lines due to turbulent motion. In order to explore the above-mentioned issues, it is important to investigate the generation processes and structure of ICM turbulence. We investigate the ICM dynamical evolution in and around a moving substructure with three-dimensional hydrodynamical simulations. Eddy-like structures develop near the boundary between the substructure and the ambient ICM through Kelvin-Helmholtz instabilities. Because of these structures, characteristic patterns appear in the line-of-sight velocity distribution of the ICM.
We use numerical simulations with hydrodynamics to demonstrate that a class of cold fronts in galaxy clusters can be attributed to oscillations of the dark matter distribution. The oscillations are initiated by the off-axis passage of a low-mass substructure. From the simulations, we derive three observable morphological features indicative of oscillations: 1) The existence of compressed isophotes; 2) The regions of compression must be alternate (opposite and staggered) and lie on an axis passing through the center of the cluster; 3) The gradient of each compression region must pass through the center of the cluster. Four of six clusters reported in the literature to have cold fronts have morphologies consistent with the presence of oscillations. The clusters with oscillations are A496, A1795, A2142, and RX J1720.1+2638. Galaxy clusters A2256 and A3667 are not consistent so the cold fronts are interpreted as group remnants. The oscillations may be able to provide sufficient energy to solve the cooling-flow problem and, importantly, provide it over an extended duration.
The two dimensional structure of hot gas in galaxy clusters contains information about the hydrodynamical state of the cluster, which can be used to understand the origin of scatter in the thermodynamical properties of the gas, and to improve the use of clusters to probe cosmology. Using a set of hydrodynamical simulations, we provide a comparison between various maps currently employed in the X-ray analysis of merging clusters and those cluster maps anticipated from forthcoming observations of the thermal Sunyaev-Zeldovich effect. We show the following: 1) an X-ray pseudo-pressure, defined as square root of the soft band X-ray image times the temperature map is a good proxy for the SZ map; 2) we find that clumpiness is the main reason for deviation between X-ray pseudo-pressure and SZ maps; 3) the level of clumpiness can be well characterized by X-ray pseudo-entropy maps. 4) We describe the frequency of deviation in various maps of clusters as a function of the amplitude of the deviation. This enables both a comparison to observations and a comparison to effects of introduction of complex physical processes into simulation.
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Karman swirling flow between two counter-rotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field, and a case with self-sustained magnetic fields. Evidence of long-term memory and $1/f$ noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Karman flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large scale magnetic field.
We investigate the dynamical properties of the cluster of galaxies A3558 (Shapley 8). Studying a region of one square degree ($sim$ 3 Mpc$^2$) centered on the cluster cD galaxy, we have obtained a statistically complete photometric catalog with positions and magnitudes of 1421 galaxies (down to a limiting magnitude of $B sim 21$). This catalog has been matched to the recent velocity data obtained by Mazure et al. (1997) and from the literature, yielding a radial velocity catalog containing 322 galaxies. Our analysis shows that the position/velocity space distribution of galaxies shows significant substructure. A central bimodal core detected previously in preliminary studies is confirmed by using the Adaptive Kernel Technique and Wavelet Analysis. We show that this central bimodal subtructure is nevertheless composed of a projected feature, kinematically unrelated to the cluster, plus a group of galaxies probably in its initial merging phase into a relaxed core. The cD velocity offset with respect to the average cluster redshift, reported earlier by several authors, is completely eliminated as a result of our dynamical analysis. The untangling of the relaxed core component also allows a better, more reliable determination of the central velocity dispersion, which in turn eliminates the ``$beta$-problem for A3558. The cluster also shows a ``preferential distribution of subclumps coinciding with the direction of the major axis position angle of the cD galaxy and of the central X-ray emission ellipsoidal distribution, in agreement with an anisotropic merger scenario.