We present a review of the history and the present state of the fractal approach to the large-scale distribution of galaxies. Angular correlation function was used as a general instrument for the structure analysis. It was realized later that a normalization condition for the reduced correlation function estimator results in distorted values for both R_{hom} and fractal dimension D. Moreover, according to a theorem on projections of fractals, galaxy angular catalogues can not be used for detecting a structure with the fractal dimension D>2. For this 3-d maps are required, and indeed modern extensive redshift-based 3-d maps have revealed the ``hidden fractal dimension of about 2, and have confirmed superclustering at scales even up to 500 Mpc (e.g. the Sloan Great Wall). On scales, where the fractal analysis is possible in completely embedded spheres, a power--law density field has been found. The fractal dimension D =2.2 +- 0.2 was directly obtained from 3-d maps and R_{hom} has expanded from 10 Mpc to scales approaching 100 Mpc. In concordance with the 3-d map results, modern all sky galaxy counts in the interval 10^m - 15^m give a 0.44m-law which corresponds to D=2.2 within a radius of 100h^{-1}_{100} Mpc. We emphasize that the fractal mass--radius law of galaxy clustering has become a key phenomenon in observational cosmology.