Do you want to publish a course? Click here

Stochastic chemical enrichment in metal-poor systems II. Abundance ratios and scatter

65   0   0.0 ( 0 )
 Added by Torgny Karlsson
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

A stochastic model of the chemical enrichment of metal-poor systems by core-collapse supernovae is used to study the scatter in stellar abundance ratios. The resulting scatter in abundance ratios, e.g. as functions of the overall metallicity, is demonstrated to be crucially dependent on the as yet uncertain supernovae yields. The observed abundance ratios and their scatters therefore have diagnostic power as regards the yields. The relatively small star-to-star scatter observed in many chemical abundance ratios, e.g. by Cayrel et al. (2004) for stars down to [Fe/H] = -4, is tentatively explained by the averaging of a large number of contributing supernovae and by the cosmic selection effects favoring contributions from supernovae in a certain mass range for the most metal-poor stars. The scatter in observed abundances of alpha-elements is understood in terms of observational errors only, while additional spread in yields or sites of nucleosynthesis may affect the odd-even elements Na and Al. For the iron-group elements we find systematically too high predicted Cr/Fe and Cr/Mg ratios, as well as differences between the different sets of yields, both in terms of predicted abundance ratios and scatter. The semi-empirical yields recently suggested by Francois et al. (2004) are found to lead to scatter in abundance ratios significantly greater than observed, when applied in the inhomogeneous models. Spurs, very narrow sequences in abundance-ratio diagrams, may disclose a single-supernova origin of the elements of the stars on the sequence. Verification of the existence of such features, called single supernova sequences (SSSs), is challenging. This will require samples of several hundred stars with abundance ratios observed to accuracies of 0.05 dex or better.



rate research

Read More

45 - T. Karlsson 2005
A stochastic model of the chemical enrichment of metal-poor systems by core-collapse (Type II) supernovae is presented, allowing for large-scale mixing of the enriched material by turbulent motions and cloud collisions in the interstellar medium. Infall of pristine material is taken into account by following the evolution of the gas density in the medium. Analytical expressions were derived for the number of stars enriched by a given number of supernovae, as well as for the amount of mass with which the ejected material from a supernova is mixed before being locked up in a subsequently formed star. It is shown that for reasonable values of the gas density (~0.1 cm-3) and of the supernova rate (~0.25 kpc-3 Myr-1) of the Galactic halo, the resulting metallicity distributions of the extreme Population II stars show a distinct cut-off at [Fe/H] ~= -4. In fact, by assuming no low-mass Population III stars were able to form out of the primordial interstellar medium, the derived fraction of stars below [Fe/H] = -4 is in agreement with observations. Moreover, the probability is high that even the most metal-poor stars observed to date have been enriched by several contributing supernovae. This partly explains the relatively small star-to-star scatter in many chemical-abundance ratios for stars down to [Fe/H] = -4, as recently found in several observational studies. Contribution from the thermonuclear (Type Ia) supernovae is found to be negligible over almost the entire extremely metal-poor regime. (***abridged***)
Extremely metal-poor stars are keys to understand the early evolution of our Galaxy. The ESO large programme TOPoS has been tailored to analyse a new set of metal-poor turn-off stars, whereas most of the previously known extremely metal-poor stars are giant stars. Sixty five turn-off stars (preselected from SDSS spectra) have been observed with the X-Shooter spectrograph at the ESO VLT Unit Telescope 2, to derive accurate and detailed abundances of magnesium, silicon, calcium, iron, strontium and barium. We analysed medium-resolution spectra (R ~ 10 000) obtained with the ESO X-Shooter spectrograph and computed the abundances of several alpha and neutron-capture elements using standard one-dimensional local thermodynamic equilibrium (1D LTE) model atmospheres. Our results confirms the super-solar [Mg/Fe] and [Ca/Fe] ratios in metal-poor turn-off stars as observed in metal-poor giant stars. We found a significant spread of the [alpha/Fe] ratios with several stars showing sub-solar [Ca/Fe] ratios. We could measure the abundance of strontium in 12 stars of the sample, leading to abundance ratios [Sr/Fe] around the Solar value. We detected barium in two stars of the sample. One of the stars (SDSS J114424-004658) shows both very high [Ba/Fe] and [Sr/Fe] abundance ratios (>1 dex).
411 - Inese I. Ivans 2001
We present a chemical composition analysis of 36 giant stars in mildly metal-poor globular cluster M5. In comparing the M5 results to those obtained in M4, a cluster previously considered to be a ``twin in age, metallicity and chemical composition, we find large star-to-star variations in the abundances of elements sensitive to proton-capture nucleosynthesis, similar [Fe/H] values, but factor of two differences in some alpha-capture, odd-Z and slow neutron-capture process elements. Among stars in globular clusters, apparently there are no definitive ``single values of [el/Fe] at a given [Fe/H] for many important elements.
We present abundance results from our Keck/HIRES observations of giants in the Galactic Bulge. We confirm that the metallicity distribution of giants in the low-reddening bulge field Baades Window can be well-fit by a closed-box enrichment model. We also confirm previous observations that find enhanced [Mg/Fe], [Si/Fe] and [Ca/Fe] for all bulge giants, including those at super-solar metallicities. However, we find that the [O/Fe] ratios of metal-rich bulge dwarfs decrease with increasing metallicity, contrary to what is expected if the enhancements of the other $alpha$-elements is due to Type II supernovae enrichment. We suggest that the decrease in oxygen production may be due to mass loss in the pre-supernova evolution of metal-rich progenitors.
We present chemical abundance measurements of three stars in the ultra-faint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high resolution spectroscopic observations we measure the metallicity of the three stars as well as abundance ratios of several $alpha$-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] $sim -2.6$ and are not $alpha$-enhanced ([$alpha$/Fe] $sim 0.0$). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultra-faint dwarfs and hints at an entirely different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature including extended star formation, a Population III supernova, and a possible association with the Large Magellanic Cloud.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا