Do you want to publish a course? Click here

Diffuse light in z~0.25 galaxy clusters: constraining tidal damage and the faint end of the Luminosity Function

97   0   0.0 ( 0 )
 Added by Stefano Zibetti
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The starlight coming from the intergalactic space in galaxy clusters and groups witnesses the violent tidal interactions that galaxies experience in these dense environments. Such interactions may be (at least partly) responsible for the transformation of normal star-forming galaxies into passive dwarf ellipticals (dEs). In this contribution we present the first systematic study of the IntraCluster Light (ICL) for a statistically representative sample (Zibetti et al. 2005), which comprises 683 clusters selected between z=0.2 and 0.3 from ~1500 deg^2 in the SDSS. Their ICL is studied by stacking the images in the g-, r-, and i-band after masking out all galaxies and polluting sources. In this way a very uniform background illumination is obtained, that allows us to measure surface brightnesses as faint as 31 mag/arcsec^2 and to trace the ICL out to 700 kpc from the central galaxy. We find that the local fraction of light contributed by intracluster stars rapidly decreases as a function of the clustercentric distance, from ~40% at 100 kpc to ~5% at 500 kpc. By comparing the distribution and colours of the ICL and of the clusters galaxies, we find indication that the main source of ICL are the stars stripped from galaxies that plunge deeply into the cluster potential well along radial orbits. Thus, if dEs are the remnants of these stripped progenitors we should expect similar radial orbital anisotropies and correlations between the dE luminosity function and the amount of ICL in different clusters. The diffuse emission we measure is contaminated by faint unresolved galaxies: this makes our flux estimate depend to some extent on the assumed luminosity function, but, on the other hand, allows us to constrain the number of faint galaxies. Our present results disfavour steep (alpha<-1.35) faint-end powerlaw slopes.



rate research

Read More

134 - Neil Trentham 1998
I review recent measurements of the faint end of the galaxy luminosity function in galaxy clusters. Evidence is presented that the luminosity function of galaxies in the central parts of clusters is remarkably constant between clusters and that this luminosity function is steep at bright and faint magnitudes and shallow in-between. The curvature is highly significant -- neither a power-law nor a Schechter function is consistent with the data. At no magnitude does alpha=-1 fit the data well. The faintest galaxies in all clusters that have been studied are dwarf spheroidal galaxies.
We present and discuss optical measurements of the faint end of the galaxy luminosity function down to M_R = -10 in five different local environments of varying galaxy density and morphological content. The environments we studied, in order of decreasing galaxy density, are the Virgo Cluster, the NGC 1407 Group, the Coma I Group, the Leo Group and the NGC 1023 Group. Our results come from a deep wide-angle survey with the NAOJ Subaru 8 m Telescope on Mauna Kea and are sensitive down to very faint surface-brightness levels. Galaxies were identified as group or cluster members on the basis of their surface brightness and morphology. The faintest galaxies in our sample have R ~ 22.5. There were thousands of fainter galaxies but we cannot distinguish cluster members from background galaxies at these faint limits so do not attempt to determine a luminosity function fainter than M_R = -10. In all cases, there are far fewer dwarfs than the numbers of low mass halos anticipated by cold dark matter theory. The mean logarithmic slope of the luminosity function between M_R = -18 and M_R = -10 is alpha ~ -1.2, far shallower than the cold dark matter mass function slope of alpha ~ -1.8. We would therefore need to be missing about 90 per cent of the dwarfs at the faint end of our sample in all the environments we study to achieve consistency with CDM theory.
140 - Eilat Glikman 2009
We have conducted a spectroscopic survey to find faint quasars (-26.0 < M_{1450} < -22.0) at redshifts z=3.8-5.2 in order to measure the faint end of the quasar luminosity function at these early times. Using available optical imaging data from portions of the NOAO Deep Wide-Field Survey and the Deep Lens Survey, we have color-selected quasar candidates in a total area of 3.76 deg^2. Thirty candidates have R <= 23 mags. We conducted spectroscopic followup for 28 of our candidates and found 23 QSOs, 21 of which are reported here for the first time, in the 3.74 < z <5.06 redshift range. We estimate our survey completeness through detailed Monte Carlo simulations and derive the first measurement of the density of quasars in this magnitude and redshift interval. We find that the binned luminosity function is somewhat affected by the K-correction used to compute the rest-frame absolute magnitude at 1450A. Considering only our R <= 23 sample, the best-fit single power-law (Phi propto L^beta) gives a faint-end slope beta = -1.6+/-0.2. If we consider our larger, but highly incomplete sample going one magnitude fainter, we measure a steeper faint-end slope -2 < beta < -2.5. In all cases, we consistently find faint-end slopes that are steeper than expected based on measurements at z ~ 3. We combine our sample with bright quasars from the Sloan Digital Sky Survey to derive parameters for a double-power-law luminosity function. Our best fit finds a bright-end slope, alpha = -2.4+/-0.2, and faint-end slope, beta = -2.3+/-0.2, without a well-constrained break luminosity. This is effectively a single power-law, with beta = -2.7+/-0.1. We use these results to place limits on the amount of ultraviolet radiation produced by quasars and find that quasars are able to ionize the intergalactic medium at these redshifts.
Aims. We aim to study the 250 micron luminosity function (LF) down to much fainter luminosities than achieved by previous efforts. Methods. We developed a modified stacking method to reconstruct the 250 micron LF using optically selected galaxies from the SDSS survey and Herschel maps of the GAMA equatorial fields and Stripe 82. Our stacking method not only recovers the mean 250 micron luminosities of galaxies that are too faint to be individually detected, but also their underlying distribution functions. Results. We find very good agreement with previous measurements in the overlapping luminosity range. More importantly, we are able to derive the LF down to much fainter luminosities (around 25 times fainter) than achieved by previous studies. We find strong positive luminosity evolution propto (1 + z)^4.89pm1.07 and moderate negative density evolution propto (1 + z)^-1.02pm0.54 over the redshift range z=[0.02, 0.5].
We present spectroscopic observations obtained with the ESO Very Large Telecope (VLT) of seven candidate Ly-alpha emitting galaxies in the field of the radio quiet Q1205-30 at z=3.04 previously detected with deep narrow band imaging. Based on equivalent widths and limits on line ratios we confirm that all seven objects are Ly-alpha emitting galaxies. Deep images also obtained with the VLT in the B and I bands show that five of the seven galaxies have very faint continuum fluxes (I(AB) approx. 26.8 and B(AB) approx. 27.3). The star formation rates of these seven galaxies estimated from the rest-frame UV continuum around 2000AA, as probed by the I-band detections, as well as from the Ly-alpha luminosities, are 1-4 M_sun yr^{-1}. This is 1-3 orders of magnitude lower than for other known populations of star-forming galaxies at similar redshifts (the Lyman-Break galaxies and the sub-mm selected sources). The inferred density of the objects is high, 16+-4 per arcmin^2 per unit redshift. This is consistent with the integrated luminosity function for Lyman-Break galaxies down to R=27 if the fraction of Ly-alpha emitting galaxies is approx. 70% at the faint end of the luminosity function. However, if this fraction is 20% as reported for the bright end of the luminosity function then the space density in this field is significantly larger (by a factor of 3.5) than expected from the luminosity function for Lyman-Break galaxies in the HDF-North. This would be an indication that at least some radio quiet QSOs at high redshift reside in overdense environments or that the faint end slope of the high redshift luminosity function has been underestimated. These observations show that Ly-alpha emission is an efficient method by which to probe the faint end of the luminosity function at high redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا