Do you want to publish a course? Click here

The Reionization History and Early Metal Enrichment inferred from the Gamma-Ray Burst Rate

85   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English
 Authors T. Murakami




Ask ChatGPT about the research

Based on the gamma-ray burst (GRB) event rate at redshifts of $4 leq z leq 12$, which is assessed by the spectral peak energy-to-luminosity relation recently found by Yonetoku et al., we observationally derive the star formation rate (SFR) for Pop III stars in a high redshift universe. As a result, we find that Pop III stars could form continuously at $4 leq z leq 12$. Using the derived Pop III SFR, we attempt to estimate the ultraviolet (UV) photon emission rate at $7 leq z leq 12$ in which redshift range no observational information has been hitherto obtained on ionizing radiation intensity. We find that the UV emissivity at $7 leq z leq 12$ can make a noticeable contribution to the early reionization. The maximal emissivity is higher than the level required to keep ionizing the intergalactic matter at $7 leq z leq 12$. However, if the escape fraction of ionizing photons from Pop III objects is smaller than 10%, then the IGM can be neutralized at some redshift, which may lead to the double reionization. As for the enrichment, the ejection of all metals synthesized in Pop III objects is marginally consistent with the IGM metallicity, although the confinement of metals in Pop III objects can reduce the enrichment significantly.



rate research

Read More

We forecast the reionization history constraints, inferred from Lyman-alpha damping wing absorption features, for a future sample of $sim 20$ $z geq 6$ gamma-ray burst (GRB) afterglows. We describe each afterglow spectrum by a three-parameter model. First, L characterizes the size of the ionized region (the bubble size) around a GRB host halo. Second, $langle{x_{rm HI}rangle}$ is the volume-averaged neutral fraction outside of the ionized bubble around the GRB, which is approximated as spatially uniform. Finally, $N_{mathrm{HI}}$ denotes the column-density of a local damped Lyman-alpha absorber (DLA) associated with the GRB host galaxy. The size distribution of ionized regions is extracted from a numerical simulation of reionization, and evolves strongly across the Epoch of Reionization (EoR). The model DLA column densities follow the empirical distribution determined from current GRB afterglow spectra. We use a Fisher matrix formalism to forecast the $langle{x_{rm HI}(z)rangle}$ constraints that can be obtained from follow-up spectroscopy of afterglows with SNR = 20 per R=3,000 resolution element at the continuum. We find that the neutral fraction may be determined to better than 10-15% (1-$sigma$) accuracy from this data across multiple independent redshift bins at $z sim 6-10$, spanning much of the EoR, although the precision degrades somewhat near the end of reionization. A more futuristic survey with $80$ GRB afterglows at $z geq 6$ can improve the precision here by a factor of $2$ and extend measurements out to $z sim 14$. We further discuss how these constraints may be combined with estimates of the escape fraction of ionizing photons, derived from the DLA column density distribution towards GRBs extracted at slightly lower redshift. This combination will help in testing whether we have an accurate census of the sources that reionized the universe.
Because massive, low-metallicity population III (PopIII) stars may produce very powerful long gamma-ray bursts (LGRBs), high-redshift GRB observations could probe the properties of the first stars. We analyze the correlation between early PopIII stars and LGRBs by using cosmological N-body/hydrodynamical simulations, which include detailed chemical evolution, cooling, star formation, feedback effects and the transition between PopIII and more standard population I/II (PopII/I) stars. From the Swift observed rate of LGRBs, we estimate the fraction of black holes that will produce a GRB from PopII/I stars to be in the range 0.028<f_{GRB}<0.140, depending on the assumed upper metallicity of the progenitor. Assuming that as of today no GRB event has been associated to a PopIII star, we estimate the upper limit for the fraction of LGRBs produced by PopIII stars to be in the range 0.006<f_{GRB}<0.022. When we apply a detection threshold compatible with the BAT instrument, we find that the expected fraction of PopIII GRBs (GRB3) is ~10% of the full LGRB population at z>6, becoming as high has 40% at z>10. Finally, we study the properties of the galaxies hosting our sample of GRB3. We find that the average metallicity of the galaxies hosting a GRB3 is typically higher than the critical metallicity used to select the PopIII stars, due to the efficiency in polluting the gas above such low values. We also find that the highest probability of finding a GRB3 is within galaxies with a stellar mass <10^7 Msun, independently from the redshift.
Because the same massive stars that reionized the intergalactic medium (IGM) inevitably exploded as supernovae that polluted the Universe with metals, the history of cosmic reionization and enrichment are intimately intertwined. While the overly sensitive Ly-alpha transition completely saturates in a neutral IGM, strong low-ionization metal lines like the MgII 2796,2804 doublet will give rise to a detectable `metal-line forest if the metals produced during reionization (Z ~ 10^{-3}Z_sol) permeate the neutral IGM. We simulate the MgII forest for the first time by combining a large hydrodynamical simulation with a semi-numerical reionization topology, assuming a simple enrichment model where the IGM is uniformly suffused with metals. In contrast to the traditional approach of identifying discrete absorbers, we treat the absorption as a continuous random field and measure its two-point correlation function, leveraging techniques from precision cosmology. We show that a realistic mock dataset of 10 JWST spectra can simultaneously determine the Mg abundance, [Mg/H], with a 1sigma precision of 0.02 dex and measure the global neutral fraction <x_HI> to 5% for a Universe with <x_HI> = 0.74 and [Mg/H] = -3.7. Alternatively, if the IGM is pristine, a null-detection of the MgII forest would set a stringent upper limit on the IGM metallicity of [Mg/H] < -4.4 at 95% credibility, assuming <x_HI> > 0.5 from another probe. Concentrations of metals in the circumgalactic environs of galaxies can significantly contaminate the IGM signal, but we demonstrate how these discrete absorbers can be easily identified and masked such that their impact on the correlation function is negligible. The MgII forest thus has tremendous potential to precisely constrain the reionization and enrichment history of the Universe.
We propose to study cosmic reionization using absorption line spectra of high-redshift Gamma Ray Burst (GRB) afterglows. We show that the statistics of the dark portions (gaps) in GRB absorption spectra represent exquisite tools to discriminate among different reionization models. We then compute the probability to find the largest gap in a given width range [Wmax, Wmax + dW] at a flux threshold Fth for burst afterglows at redshifts 6.3 < z < 6.7. We show that different reionization scenarios populate the (Wmax, Fth) plane in a very different way, allowing to distinguish among different reionization histories. We provide here useful plots that allow a very simple and direct comparison between observations and model results. Finally, we apply our methods to GRB 050904 detected at z = 6.29. We show that the observation of this burst strongly favors reionization models which predict a highly ionized intergalactic medium at z~6, with an estimated mean neutral hydrogen fraction xHI = 6.4 pm 0.3 times 10^-5 along the line of sight towards GRB 050904.
Nearby gamma-ray bursts (GRBs) are likely to have represented a significant threat to life on the Earth. Recent observations suggest that a significant source of such bursts is compact binary mergers in globular clusters. This link between globular clusters and GRBs offers the possibility to find time intervals in the past with higher probabilities of a nearby burst, by tracing globular cluster orbits back in time. Here we show that the expected flux from such bursts is not flat over the past 550 Myr but rather exhibits three broad peaks, at 70, 180 and 340 Myr ago. The main source for nearby GRBs for all three time intervals is the globular cluster 47 Tuc, a consequence of its large mass and high stellar encounter rate, as well as the fact that it is one of the globular clusters which comes quite close to the Sun. Mass extinction events indeed coincide with all three time intervals found in this study, although a chance coincidence is quite likely. Nevertheless, the identified time intervals can be used as a guide to search for specific signatures of GRBs in the geological record around these times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا