Do you want to publish a course? Click here

The 2dF-SDSS LRG and QSO Survey: The z<2.1 Quasar Luminosity Function from 5645 Quasars to g=21.85

136   0   0.0 ( 0 )
 Added by Gordon T. Richards
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have used the 2dF instrument on the AAT to obtain redshifts of a sample of z<3, 18.0<g<21.85 quasars selected from SDSS imaging. These data are part of a larger joint programme: the 2dF-SDSS LRG and QSO Survey (2SLAQ). We describe the quasar selection algorithm and present the resulting luminosity function of 5645 quasars in 105.7 deg^2. The bright end number counts and luminosity function agree well with determinations from the 2dF QSO Redshift Survey (2QZ) data to gsim20.2. However, at the faint end the 2SLAQ number counts and luminosity function are steeper than the final 2QZ results from Croom et al. (2004), but are consistent with the preliminary 2QZ results from Boyle et al. (2000). Using the functional form adopted for the 2QZ analysis, we find a faint end slope of beta=-1.78+/-0.03 if we allow all of the parameters to vary and beta=-1.45+/-0.03 if we allow only the faint end slope and normalization to vary. Our maximum likelihood fit to the data yields 32% more quasars than the final 2QZ parameterization, but is not inconsistent with other g>21 deep surveys. The 2SLAQ data exhibit no well defined ``break but do clearly flatten with increasing magnitude. The shape of the quasar luminosity function derived from 2SLAQ is in good agreement with that derived from type I quasars found in hard X-ray surveys. [Abridged]



rate research

Read More

66 - D. A. Wake 2006
We present new measurements of the luminosity function (LF) of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) and the 2dF-SDSS LRG and Quasar (2SLAQ) survey. We have carefully quantified, and corrected for, uncertainties in the K and evolutionary corrections, differences in the colour selection methods, and the effects of photometric errors, thus ensuring we are studying the same galaxy population in both surveys. Using a limited subset of 6326 SDSS LRGs (with 0.17<z<0.24) and 1725 2SLAQ LRGs (with 0.5 <z<0.6), for which the matching colour selection is most reliable, we find no evidence for any additional evolution in the LRG LF, over this redshift range, beyond that expected from a simple passive evolution model. This lack of additional evolution is quantified using the comoving luminosity density of SDSS and 2SLAQ LRGs, brighter than M_r - 5logh = -22.5, which are 2.51+/-0.03 x 10^-7 L_sun Mpc^-3 and 2.44+/-0.15 x 10^-7 L_sun Mpc^-3 respectively (<10% uncertainty). We compare our LFs to the COMBO-17 data and find excellent agreement over the same redshift range. Together, these surveys show no evidence for additional evolution (beyond passive) in the LF of LRGs brighter than M_r - 5logh = -21 (or brighter than L*). We test our SDSS and 2SLAQ LFs against a simple ``dry merger model for the evolution of massive red galaxies and find that at least half of the LRGs at z=0.2 must already have been well-assembled (with more than half their stellar mass) by z=0.6. This limit is barely consistent with recent results from semi-analytical models of galaxy evolution.
103 - J. da Angela 2006
We combine the QSO samples from the 2dF QSO Redshift Survey (2QZ) and the 2dF-SDSS LRG and QSO Survey (2SLAQ) in order to investigate the clustering of z~1.4 QSOs and measure the correlation function. The clustering signal in z-space, projected along the sky direction, is similar to that previously obtained from 2QZ alone. By fitting the z-space correlation function and lifting the degeneracy between beta and Omega_m_0 by using linear theory predictions, we obtain beta(z=1.4) = 0.60+-0.12 and Omega_m_0=0.25+-0.08, implying a value for the QSO bias, b(z=1.4)=1.5+-0.2. We further find that QSO clustering does not depend strongly on luminosity at fixed redshift. This result is inconsistent with the expectation of simple `high peaks biasing models where more luminous, rare QSOs are assumed to inhabit higher mass haloes. The data are more consistent with models which predict that QSOs of different luminosities reside in haloes of similar mass. We find that halo mass does not evolve strongly with redshift nor depend on QSO luminosity. We finally investigate how black hole mass correlates with luminosity and redshift and ascertain the relation between Eddington efficiency and black hole mass. Our results suggest that QSOs of different luminosities may contain black holes of similar mass.
155 - Scott M. Croom 2008
We present the final spectroscopic QSO catalogue from the 2dF-SDSS LRG and QSO (2SLAQ) Survey. This is a deep, 18<g<21.85 (extinction corrected), sample aimed at probing in detail the faint end of the broad line AGN luminosity distribution at z<2.6. The candidate QSOs were selected from SDSS photometry and observed spectroscopically with the 2dF spectrograph on the Anglo-Australian Telescope. This sample covers an area of 191.9 deg^2 and contains new spectra of 16326 objects, of which 8764 are QSOs, and 7623 are newly discovered (the remainder were previously identified by the 2QZ and SDSS surveys). The full QSO sample (including objects previously observed in the SDSS and 2QZ surveys) contains 12702 QSOs. The new 2SLAQ spectroscopic data set also contains 2343 Galactic stars, including 362 white dwarfs, and 2924 narrow emission line galaxies with a median redshift of z=0.22. We present detailed completeness estimates for the survey, based on modelling of QSO colours, including host galaxy contributions. This calculation shows that at g~21.85 QSO colours are significantly affected by the presence of a host galaxy up to redshift z~1 in the SDSS ugriz bands. In particular we see a significant reddening of the objects in g-i towards fainter g-band magnitudes. This reddening is consistent with the QSO host galaxies being dominated by a stellar population of age at least 2-3 Gyr. The full catalogue, including completeness estimates, is available on-line at http://www.2slaq.info/
116 - Nicholas P. Ross 2006
We present a clustering analysis of Luminous Red Galaxies (LRGs) using nearly 9 000 objects from the final catalogue of the 2dF-SDSS LRG And QSO (2SLAQ) Survey. We measure the redshift-space two-point correlation function, xi(s), at the mean LRG redshift of z=0.55. A single power-law fits the deprojected correlation function, xi(r), with a correlation length of r_0=7.45+-0.35 Mpc and a power-law slope of gamma=1.72+-0.06 in the 0.4<r<50 Mpc range. But it is in the LRG angular correlation function that the strongest evidence for non-power-law features is found where a slope of gamma=-2.17+-0.07 is seen at 1<r<10 Mpc with a flatter gamma=-1.67+-0.03 slope apparent at r<~1 Mpc scales. We use the simple power-law fit to the galaxy xi(r) to model the redshift space distortions in the 2-D redshift-space correlation function, xi(sigma,pi). We fit for the LRG velocity dispersion, w_z, Omega_m and beta, where beta=Omega_m^0.6/b and b is the linear bias parameter. We find values of w_z=330kms^-1, Omega_m= 0.10+0.35-0.10 and beta=0.40+-0.05. These high redshift results, which incorporate the Alcock-Paczynski effect and the effects of dynamical infall, start to break the degeneracy between Omega_m and beta found in low-redshift galaxy surveys. This degeneracy is further broken by introducing an additional external constraint, the value of beta(z=0.1)=0.45 from 2dFGRS, and then considering the evolution of clustering from z~0 to z_LRG~0.55. With these combined methods we find Omega_m(z=0)=0.30+-0.15 and beta(z=0.55)=0.45+-0.05. Assuming these values, we find a value for b(z=0.55)=1.66+-0.35. We show that this is consistent with a simple ``high peaks bias prescription which assumes that LRGs have a constant co-moving density and their clustering evolves purely under gravity. [ABRIDGED]
426 - R. Cannon 2006
We present a spectroscopic survey of almost 15,000 candidate intermediate-redshift Luminous Red Galaxies (LRGs) brighter than i=19.8, observed with 2dF on the Anglo-Australian Telescope. The targets were selected photometrically from the Sloan Digital Sky Survey (SDSS) and lie along two narrow equatorial strips covering 180 sq deg. Reliable redshifts were obtained for 92% of the targets and the selection is very efficient: over 90% have redshifts between 0.45 and 0.8. More than 80% of the ~11,000 red galaxies have pure absorption-line spectra consistent with a passively-evolving old stellar population. The redshift, photometric and spatial distributions of the LRGs are described. The 2SLAQ data will be released publicly from mid-2006, providing a powerful resource for observational cosmology and the study of galaxy evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا