Do you want to publish a course? Click here

Black Holes in Galaxy Mergers: Evolution of Quasars

83   0   0.0 ( 0 )
 Added by Philip Hopkins
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on numerical simulations of gas-rich galaxy mergers, we discuss a model in which quasar activity is tied to the self-regulated growth of supermassive black holes in galaxies. Nuclear inflow of gas attending a galaxy collision triggers a starburst and feeds black hole growth, but for most of the duration of the starburst, the black hole is heavily obscured by surrounding gas and dust which limits the visibility of the quasar, especially at optical and UV wavelengths. Eventually, feedback energy from accretion heats the gas and expels it in a powerful wind, leaving a dead quasar. Between buried and dead phases there is a window during which the galaxy would be seen as a luminous quasar. Because the black hole mass, radiative output, and distribution of obscuring gas and dust all evolve strongly with time, the duration of this phase of observable quasar activity depends on both the waveband and imposed luminosity threshold. We determine the observed and intrinsic lifetimes as a function of luminosity and frequency, and calculate observable lifetimes ~10 Myr for bright quasars in the optical B-band, in good agreement with empirical estimates and much smaller than the black hole growth timescales ~100 Myr, naturally producing a substantial population of buried quasars. However, observed and intrinsic energy outputs converge in the IR and hard X-ray bands as attenuation becomes weaker and chances of observation greatly increase. We obtain the distribution of column densities along sightlines in which the quasar is seen above a given luminosity, and find that our result agrees remarkably well with observed estimates of the column density distribution from the SDSS for appropriate luminosity thresholds. (Abridged)



rate research

Read More

357 - Simone Callegari 2009
We examine the pairing process of supermassive black holes (SMBHs) down to scales of 20-100 pc using a set of N-body/SPH simulations of binary mergers of disk galaxies with mass ratios of 1:4 and 1:10. Our numerical experiments are designed to represent merger events occurring at various cosmic epochs. The initial conditions of the encounters are consistent with the LambdaCDM paradigm of structure formation, and the simulations include the effects of radiative cooling, star formation, and supernovae feedback. We find that the pairing of SMBHs depends sensitively on the amount of baryonic mass preserved in the center of the companion galaxies during the last phases of the merger. In particular, due to the combination of gasdynamics and star formation, we find that a pair of SMBHs can form in 1:10 minor mergers provided that galaxies are relatively gas-rich (gas fractions of 30% of the disk mass) and that the mergers occur at relatively high redshift (z~3), when dynamical friction timescales are shorter. Since 1:10 mergers are most common events during the assembly of galaxies, and mergers are more frequent at high redshift when galaxies are also more gas-rich, our results have positive implications for future gravitational wave experiments such as the Laser Interferometer Space Antenna.
The coalescence of massive black hole binaries (BHBs) in galactic mergers is the primary source of gravitational waves (GWs) at low frequencies. Current estimates of GW detection rates for the Laser Interferometer Space Antenna and the Pulsar Timing Array vary by three orders of magnitude. To understand this variation, we simulate the merger of equal-mass, eccentric, galaxy pairs with central massive black holes and shallow inner density cusps. We model the formation and hardening of a central BHB using the Fast Multiple Method as a force solver, which features a $O(N)$ scaling with the number $N$ of particles and obtains results equivalent to direct-summation simulations. At $N sim 5times 10^5$, typical for contemporary studies, the eccentricity of the BHBs can vary significantly for different random realisations of the same initial condition, resulting in a substantial variation of the merger timescale. This scatter owes to the stochasticity of stellar encounters with the BHB and decreases with increasing $N$. We estimate that $N sim 10^7$ within the stellar half-light radius suffices to reduce the scatter in the merger timescale to $sim 10$%. Our results suggest that at least some of the uncertainty in low-frequency GW rates owes to insufficient numerical resolution.
We use hydrodynamical simulations to study the color transformations induced by star formation and active galactic nuclei (AGN) during major mergers of spiral galaxies. Our modeling accounts for radiative cooling, star formation, and supernova feedback. Moreover, we include a treatment of accretion onto supermassive black holes embedded in the nuclei of the merging galaxies. We assume that a small fraction of the bolometric luminosity of an accreting black hole couples thermally to surrounding gas, providing a feedback mechanism that regulates its growth. The encounter and coalescence of the galaxies triggers nuclear gas inflow which fuels both a powerful starburst and strong black hole accretion. Comparing simulations with and without black holes, we show that AGN feedback can quench star formation and accretion on a short timescale,particularly in large galaxies where the black holes can drive powerful winds once they become sufficiently massive. The color evolution of the remnant differs markedly between mergers with and without central black holes. Without AGN, gas-rich mergers lead to ellipticals which remain blue owing to residual star formation, even after more than 7 Gyrs have elapsed. In contrast, mergers with black holes produce ellipticals that redden much faster, an effect that is more pronounced in massive remnants where a nearly complete termination of star formation occurs, allowing them to redden to u-r ~ 2.3 in less than one Gyr. AGN feedback may thus be required to explain the population of extremely red massive early type-galaxies, and it appears to be an important driver in generating the observed bimodal color distribution of galaxies in the Local Universe.
124 - E. W. Bonning 2007
Recent simulations of merging black holes with spin give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole can retain the inner part of its accretion disk, providing fuel for a continuing QSO phase lasting millions of years as the hole moves away from the galactic nucleus. One possible observational manifestation of a recoiling accretion disk is in QSO emission lines shifted in velocity from the host galaxy. We have examined QSOs from the Sloan Digital Sky Survey with broad emission lines substantially shifted relative to the narrow lines. We find no convincing evidence for recoiling black holes carrying accretion disks. We place an upper limit on the incidence of recoiling black holes in QSOs of 4% for kicks greater than 500 km/s and 0.35% for kicks greater than 1000 km/s line-of-sight velocity.
We study the effect of AGN mechanical and radiation feedback on the formation of bulge dominated galaxies via mergers of disc galaxies. The merging galaxies have mass-ratios of 1:1 to 6:1 and include pre-existing hot gaseous halos to properly account for the global impact of AGN feedback. Using smoothed particle hydrodynamics simulation code (GADGET-3) we compare three models with different AGN feedback models: (1) no black hole and no AGN feedback; (2) thermal AGN feedback; and (3) mechanical and radiative AGN feedback. The last model is motivated by observations of broad line quasars which show winds with initial velocities of $v_w ge$ 10,000 km/s and also heating associated with the central AGN X-ray radiation. The primary changes in gas properties due to mechanical AGN feedback are lower thermal X-ray luminosity from the final galaxy - in better agreement with observations - and galactic outflows with higher velocity $sim 1000$ km/s similar to recent direct observations of nearby merger remnants. The kinetic energy of the outflowing gas is a factor of $sim$ 20 higher than in the thermal feedback case. All merger remnants with momentum-based AGN feedback with $v_w sim 10,000$ km/s and $epsilon_w=2 times 10^{-3}$, independent of their progenitor mass-ratios, reproduce the observed relations between stellar velocity dispersion and black hole mass ($M_{rm bh} - sigma$) as well as X-ray luminosity ($L_X - sigma$) with $10^{37.5}$ erg/s $lesssim L_X (0.3-8~{rm keV}) lesssim 10^{39.2}$ erg/s for velocity dispersions in the range of 120 km/s $lesssim sigma lesssim$ 190 km/s. In addition, the mechanical feedback produces a much greater AGN variability. We also show that gas is more rapidly and impulsively stripped from the galactic centres driving a moderate increase in galaxy size and decrease in central density with the mechanical AGN feedback model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا