No Arabic abstract
After confirmation of the presence of a nonthermal hard X-ray excess with respect to the thermal emission in the Coma cluster from two independent observations, obtained using the Phoswich Detection System onboard BeppoSAX, we present in this Letter also for Abell 2256 the results of two observations performed with a time interval of about 2.5 yr. In both spectra a nonthermal excess is present at a confidence level of ~3.3sigma and ~3.7sigma, respectively. The combined spectrum obtained by adding up the two spectra allows to measure an excess at the level of ~4.8sigma in the 20-80 keV energy range. The nonthermal X-ray flux is in agreement with the published value of the first observation (Fusco-Femiano et al. 2000) and with that measured by a Rossi X-Ray Timing Explorer observation (Rephaeli & Gruber 2003).
We present a long BeppoSAX observation of Abell 754 that reports a nonthermal excess with respect to the thermal emission at energies greater than ~45 keV. A VLA radio observation at 1.4 GHz definitely confirms the existence of diffuse radio emission in the central region of the cluster, previously suggested by images at 74 and 330 MHz (Kassim et al 2001), and reports additional features. Besides, our observation determines a steeper radio halo spectrum in the 330-1400 MHz frequency range with respect to the spectrum detected at lower frequencies, indicating the presence of a spectral cutoff. The presence of a radio halo in A754, considered the prototype of a merging cluster, reinforces the link between formation of Mpc-scale radio regions and very recent or current merger processes. The radio results combined with the hard X-ray excess detected by BeppoSAX give information on the origin of the electron population responsible for nonthermal phenomena in galaxy clusters. We discuss also the possibility that 26W20, a tailed radio galaxy with BL Lac characteristics located in the field of view of the PDS, could be responsible for the observed nonthermal hard X-ray emission.
Chandra ACIS-S observations of the galaxy cluster A3112 feature the presence of an excess of X-ray emission above the contribution from the diffuse hot gas, which can be equally well modeled with an additional non-thermal power-law model or with a low-temperature thermal model of low metal abundance. We show that the excess emission cannot be due to uncertainties in the background subtraction or in the Galactic HI column density. Calibration uncertainties in the ACIS detector that may affect our results are addressed by comparing the Chandra data to XMM MOS and PN spectra. While differences between the three instruments remain, all detect the excess in similar amounts, providing evidence against an instrumental nature of the excess. Given the presence of non-thermal radio emission near the center of A3112, we argue that the excess X-ray emission is of non-thermal nature and distributed throughout the entire X-ray bandpass, from soft to hard X-rays. The excess can be explained with the presence of a population of relativistic electrons with ~7% of the clusters gas pressure. We also discuss a possible thermal nature of the excess, and examine the problems associated with such interpretation.
We present the results from Suzaku observations of the hottest Abell galaxy cluster A2163 at $z=0.2$. To study the physics of gas heating in cluster mergers, we investigated hard X-ray emission from the merging cluster A2163, which hosts the brightest synchrotron radio halo. We analyzed hard X-ray spectra accumulated from two-pointed Suzaku observations. Non-thermal hard X-ray emission should result from the inverse Compton (IC) scattering of relativistic electrons by the CMB photons. To measure this emission, the dominant thermal emission in the hard X-ray band must be modeled in detail. To this end, we analyzed the combined broad-band X-ray data of A2163 collected by Suzaku and XMM-Newton, assuming single- and multi-temperature models for thermal emission and the power-law model for non-thermal emission. From the Suzaku data, we detected significant hard X-ray emission from A2163 in the 12-60 keV band at the $28sigma$ level (or at the $5.5sigma$ level if a systematic error is considered). The Suzaku HXD spectrum alone is consistent with the single-T thermal model of gas temperature $kT=14$ keV. From the XMM data, we constructed a multi-T model including a very hot ($kT=18$ keV) component in the NE region. Incorporating the multi-T and the power-law models into a two-component model with a radio-band photon index, the 12-60 keV energy flux of non-thermal emission is constrained within $5.3 pm 0.9 (pm 3.8)times 10^{-12}~{rm erg, s^{-1} cm^{-2}}$. The 90% upper limit of detected IC emission is marginal ($< 1.2times 10^{-11}~{rm erg, s^{-1} cm^{-2}}$ in the 12-60 keV). The estimated magnetic field in A2163 is $B > 0.098~{rm mu G}$. While the present results represent a three-fold increase in the accuracy of the broad band spectral model of A2163, more sensitive hard X-ray observations are needed to decisively test for the presence of hard X-ray emission due to IC emission.
We report polarimetry results of a merging cluster of galaxies Abell 2256 with Karl G. Jansky Very Large Array (JVLA). We performed new observations with JVLA at S-band (2051-3947 MHz) and X-band (8051-9947 MHz) in the C array configuration, and detected significant polarized emissions from the radio relic, Source A, and Source B in this cluster. We calculated the total magnetic field strengths toward the radio relic using revised equipartition formula, which is 1.8-5.0 microG. With dispersions of Faraday rotation measure, magnetic-field strengths toward Sources A and B are estimated to be 0.63-1.26 microG and 0.11-0.21 microG, respectively. An extremely high degree of linear polarization, as high as ~ 35 %, about a half of the maximum polarization, was detected toward the radio relic, which indicates highly ordered magnetic lines of force over the beam sizes (~ 52 kpc).The fractional polarization of the radio relic decreases from ~ 35 % to ~ 20 % around 3 GHz as the frequency decreases and is nearly constant between 1.37 and 3 GHz. Both analyses with depolarization models and Faraday tomography suggest multiple depolarization components toward the radio relic and imply the existence of turbulent magnetic fields.
We present the first deep low frequency radio observations of the massive and highly disturbed galaxy cluster Abell 2744 using the upgraded Giant Metrewave Radio Telescope (uGMRT). The cluster is experiencing a very complex multiple merger and hosts a giant halo and four radio relics. The uGMRT observations, together with existing VLA and Chandra observations, allow us to study the complexity of the physical mechanisms active in this system. Our new images reveal that the central halo emission is more extended toward low frequencies. We find that the integrated spectrum of the halo follows a power-law between 150 MHz and 3 GHz, while its subregions show significantly different spectra, also featuring high frequency spectral steepening. The halo also shows local regions in which the spectral index is significantly different from the average value. Our results highlight that an overall power-law spectrum, as observed in many radio halos, may also arise from the superposition of different subcomponents. The comparison of the radio surface brightness and spectral index with the X-ray brightness and temperature reveals for the first time different trends, indicating that the halo consists of two main components. All four relics in this system follow a power-law radio spectrum, compatible with shocks with Mach numbers in the range $3.0-4.5$. All relics are also highly polarized from 1-4 GHz and show low Faraday dispersion measures, suggesting that they are located in the outermost regions of the cluster. The complexity in the distribution and properties of nonthermal components in Abell 2744 supports a multiple merger scenario, as also highlighted by previous X-ray and lensing studies. Our unique results demonstrate the importance of sensitive and high-resolution, multi-frequency radio observations for understanding the interplay between the thermal and non-thermal components of the ICM.