Do you want to publish a course? Click here

Stellar Populations in Ten Clump-Cluster Galaxies of the Ultra Deep Field

80   0   0.0 ( 0 )
 Added by Bruce Elmegreen
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Color-color diagrams for the clump and interclump emission in 10 clump-cluster galaxies of the Ultra Deep Field are made from B,V,i, and z images and compared with models to determine redshifts, star formation histories, and galaxy masses. The clump colors suggest declining star formation over the last ~0.3 Gy, while the interclump emission is older. The clump luminous masses are typically 6x10^8 Msun and their diameters average 1.8 kpc. Total galaxy luminous masses average 6.5x10^10 Msun. The distribution of axial ratios is consistent with a thick disk geometry. The ages of the clumps are longer than their internal dynamical times by a factor of ~8, so they are stable clusters, but the clump densities are only ~10 times the limiting tidal densities, so they could be deformed by tidal forces. This is consistent with the observation that some clumps have tails. The clumps could form by gravitational instabilities in accreting disk gas, or they could be captured as gas-rich dwarf galaxies. Support for this second possibility comes from the high abundance of nearly identical bare clumps in the UDF field. Several clump-clusters have disk densities that are much larger than in local disks, suggesting they do not survive but get converted into ellipticals by collisions.



rate research

Read More

We study the nature of faint, red-selected galaxies at z ~ 2-3 using the Hubble Ultra Deep Field (HUDF) and Spitzer IRAC photometry. We detect candidate galaxies to H < 26 mag, probing lower-luminosity (lower mass) galaxies at these redshifts. We identify 32 galaxies satisfying the (J - H) > 1.0 mag color selection, 16 of which have unblended [3.6um] and [4.5um] IRAC photometry. We derive photometric redshifts, masses, and stellar population parameters for these objects. We find that the selected objects span a diverse range of properties over a large range of redshifts, 1 < z < 3.5. A substantial fraction (11/32) appear to be lower-redshift (z < 2.5), heavily obscured dusty galaxies or edge-on spiral galaxies, while others (12/32) appear to be galaxies at 2 < z < 3.5 whose light at rest-frame optical wavelengths is dominated by evolved stellar populations. Interestingly, by including Spitzer data many candidates for galaxies dominated by evolved stellar populations are rejected, and for only a subset of the sample (6/16) do the data favor this interpretation. We place an upper limit on the space and stellar mass density of candidate massive evolved galaxies. The z > 2.5 objects that are dominated by evolved stellar populations have a space density at most one-third that of z ~ 0 red, early-type galaxies. Therefore, at least two-thirds of present-day early-type galaxies assemble or evolve into their current configuration at redshifts below 2.5. We find a dearth of candidates for low-mass galaxies at 1.5 < z < 3 that are dominated by passively evolving stellar populations even though the data should be sensitive to them; thus, at these redshifts, galaxies whose light is dominated by evolved stellar populations are restricted to only those galaxies that have assembled high stellar mass.[Abridged]
Clump clusters and chain galaxies in the Hubble Ultra Deep Field are examined for bulges in the NICMOS images. Approximately 50% of the clump clusters and 30% of the chains have relatively red and massive clumps that could be young bulges. Magnitudes and colors are determined for these bulge-like objects and for the bulges in spiral galaxies, and for all of the prominent star-formation clumps in these three galaxy types. The colors are fitted to population evolution models to determine the bulge and clump masses, ages, star-formation rate decay times, and extinctions. The results indicate that bulge-like objects in clump cluster and chain galaxies have similar ages and 2 to 5 times larger masses compared to the star-formation clumps, while the bulges in spirals have ~6 times larger ages and 20 to 30 times larger masses than the clumps. All systems appear to have an underlying red disk population. The masses of star-forming clumps are typically in a range from 10^7 to 10^8 Msun; their ages have a wide range around ~10^2 Myr. Ages and extinctions both decrease with redshift. Star formation is probably the result of gravitational instabilities in the disk gas, in which case the large clump mass in the UDF is the result of a high gas velocity dispersion, 30 km/s or more, combined with a high gas mass column density, ~100 Msun/pc^2. Because clump clusters and chains dominate disk galaxies beyond z~1, the observations suggest that these types represent an early phase in the formation of modern spiral galaxies, when the bulge and inner disk formed.
We measure the build-up of the stellar mass of galaxies from z=6 to z=1. Using 15 band multicolor imaging data in the NICMOS Ultra Deep Field we derive photometric redshifts and masses for 796 galaxies down to H(AB)=26.5. The derived evolution of the global stellar mass density of galaxies is consistent with previous star formation rate density measurements over the observed range of redshifts. Beyond the observed range, maintaining consistency between the global stellar mass and the observed star formation rate suggests the epoch of galaxy formation was z=16.
This paper is part of a series devoted to the study of the stellar populations in brightest cluster galaxies (BCGs), aimed at setting constraints on the formation and evolution of these objects. We have obtained high signal-to-noise ratio, long-slit spectra of 49 BCGs in the nearby Universe. Here, we derive Single Stellar Population (SSP)-equivalent ages, metallicities and alpha-abundance ratios in the centres of the galaxies using the Lick/IDS system of absorption line indices. We systematically compare the indices and derived parameters for the BCGs with those of large samples of ordinary elliptical galaxies in the same mass range. We find no significant differences between the index-velocity dispersion relations of the BCG data and those of normal ellipticals, but we do find subtle differences between the derived SSP-parameters. The BCGs show, on average, higher metallicity ([Z/H]) and alpha-abundance ([E/Fe]) values. We analyse possible correlations between the derived parameters and the internal properties of the galaxies (velocity dispersion, rotation, luminosity) and those of the host clusters (density, mass, distance from BCG to X-ray peak, presence of cooling flows), with the aim of dissentangling if the BCG properties are more influenced by their internal or host cluster properties. The SSP-parameters show very little dependence on the mass or luminosity of the galaxies, or the mass or density of the host clusters. Of this sample, 26 per cent show luminosity-weighted ages younger than 6 Gyr, probably a consequence of recent - if small - episodes of star formation. In agreement with previous studies, the BCGs with intermediate ages tend to be found in cooling-flow clusters with large X-ray excess.
Based on FORS2-VLT long-slit spectroscopy, the analysis of the central absorption line indices of 9 S0 galaxies in the Fornax Cluster is presented. Central indices correlate with central velocity dispersions as observed in ellipticals. However, the stellar population properties of these S0s indicates that the observed trends are produced by relative differences in age and alpha-element abundances and not in metallicity ([Fe/H]) as previous studies have found in elliptical galaxies. The observed scatter in the line indices vs. velocity dispersion relations can be partially explained by the rotationally-supported nature of many of these systems. The presence of tighter line indices vs. maximum (circular) rotational velocity relations confirms this statement. It was also confirmed that the dynamical mass is the driving physical property of all these correlations and in our Fornax S0s it has to be estimated assuming rotational support.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا