Do you want to publish a course? Click here

A radial velocity survey of low Galactic latitude structures: I. Kinematics of the Canis Major dwarf galaxy

94   0   0.0 ( 0 )
 Added by Nicolas Martin
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

As part of a radial velocity survey of low Galactic latitude structures that we undertook with the 2dF spectrograph on the AAT, we present the radial velocities of more than 1500 Red Giant Branch and Red Clump stars towards the centre of the Canis Major dwarf galaxy. With a mean velocity of 72pm7 km/s at a Heliocentric distance of 5.5 kpc and 114pm2 km/s at 8.5 kpc, these stars present a peculiar distance -- radial velocity relation that is unlike that expected from thin or thick disc stars. Moreover, they belong to a kinematically cold population with an intrinsic dispersion that may be as low as 11_{-1}^{+3} km/s. The radial velocity distribution is used to select Canis Major stars in the UCAC2.0 proper motion catalogue and derive proper motions in Galactic coordinates of (mu_l,mu_b)= (-3.6pm0.8 mas/yr, 1.5pm0.4 mas/yr) for the dwarf galaxy, which after correcting for the reflex solar motion along this line-of-sight gives (mu_l,mu_b)= (-6.8pm0.8 mas/yr, 0.8pm0.4 mas/yr)$, corresponding to a prograde orbit with a tangential velocity of sim235 km/s at the average distance of sim7.2 kpc. All these kinematic constraints can be reproduced in simulations of the accretion of a dwarf onto the Galactic disc. Such a process could also be responsible for the Monoceros Ring that has recently been shown to encompass the Galactic disc. However, without constraints on the kinematics of the tidal arms emerging from the Canis Major dwarf, it is not yet possible to definitively prove a link between the two structures.



rate research

Read More

Recent observational evidence suggests that the Sagittarius dwarf galaxy represents the only major ongoing accretion event in the Galactic halo, accounting for the majority of stellar debris identified there. This paper summarizes the recent discovery of another potential Milky Way accretion event, the Canis Major dwarf galaxy. This dwarf satellite galaxy is found to lie just below the Galactic plane and appears to be on an equatorial orbit. Unlike Sagittarius, which is contributing to the Galactic halo, the location and eventual demise of Canis Major suggests that it represents a building block of the thick disk.
As part of our radial velocity survey of low Galactic latitude structures that surround the Galactic disc, we report the detection of the so called Monoceros Ring in the foreground of the Carina dwarf galaxy at Galactic coordinates (l,b)=(260,-22) based on VLT/FLAMES observations of the dwarf galaxy. At this location, 20 degrees in longitude greater than previous detections, the Ring has a mean radial velocity of 145+/-5 km/s and a velocity dispersion of only 17+/-5 km/s. Based on Keck/DEIMOS observations, we also determine that the Ring has a mean radial velocity of -75+/-4 km/s in the foreground of the Andromeda galaxy at (l,b)sim(122,-22), along with a velocity dispersion of 26+/-3 km/s. These two kinematic detections are both highly compatible with known characteristics of the structure and, along with previous detections provide radial velocity values of the Ring over the 120<l<260 range. This should add strong constraints on numerical models of the accretion of the dwarf galaxy that is believed to be the progenitor of the Ring.
We present an analysis of the asymmetries in the population of Galactic M-giant stars present in the 2MASS All Sky catalogue. Several large-scale asymmetries are detected, the most significant of which is a strong elliptical-shaped stellar over-density, close to the Galactic plane at (l=240, b=-8), in the constellation of Canis Major. A small grouping of globular clusters (NGC 1851, NGC 1904, NGC 2298, and NGC 2808), coincident in position and radial velocity, surround this structure, as do a number of open clusters. The population of M-giant stars in this over-density is similar in number to that in the core of the Sagittarius dwarf galaxy. We argue that this object is the likely dwarf galaxy progenitor of the ring-like structure that has recently been found at the edge of the Galactic disk. A numerical study of the tidal disruption of an accreted dwarf galaxy is presented. The simulated debris fits well the extant position, distance and velocity information on the ``Galactic Ring, as well as that of the M-giant over-densities, suggesting that all these structures are the consequence of a single accretion event. The disrupted dwarf galaxy stream orbits close to the Galactic Plane, with a pericentre at approximately the Solar circle, an orbital eccentricity similar to that of stars in the Galactic thick disk, as well as a vertical scale height similar to that of the thick disk. This finding strongly suggests that the Canis Major dwarf galaxy is a building block of the Galactic thick disk, that the thick disk is continually growing, even up to the present time, and that thick disk globular clusters were accreted onto the Milky Way from dwarf galaxies in co-planar orbits.
Observations of Galactic H I gas for seven targeted regions at intermediate Galactic latitude are presented at 1 angular resolution using data from the DRAO Synthesis Telescope (ST) and the Green Bank Telescope (GBT). The DHIGLS data are the most extensive arcminute resolution measurements of the diffuse atomic interstellar medium beyond those in the Galactic plane. The acquisition, reduction, calibration, and mosaicking of the DRAO ST data and the cross calibration and incorporation of the short-spacing information from the GBT are described. The high quality of the resulting DHIGLS products enables a variety of new studies in directions of low Galactic column density. We analyze the angular power spectra of maps of the integrated H I emission (column density) from the data cubes for several distinct velocity ranges. Fitting power spectrum models based on a power law, but including the effects of the synthesized beam and noise at high spatial frequencies, we find exponents ranging from -2.5 to -3.0.. Power spectra of maps of the centroid velocity for these components give similar results. These exponents are interpreted as being representative of the 3D density and 3D velocity fields of the atomic gas, respectively. We find evidence for dramatic changes in the H I structures in channel maps over even small changes in velocity. This narrow line emission has counterparts in absorption spectra against bright background radio sources, quantifying that the gas is cold and dense and can be identified as the cold neutral medium phase. Fully reduced DHIGLS H I data cubes and other data products are available at www.cita.utoronto.ca/DHIGLS.
Overdensities in the distribution of low latitude, 2MASS giant stars are revealed by systematically peeling away from sky maps the bulk of the giant stars conforming to ``isotropic density laws generally accounting for known Milky Way components. This procedure, combined with a higher resolution treatment of the sky density of both giants and dust allows us to probe to lower Galactic latitudes than previous 2MASS giant star studies. While the results show the swath of excess giants previously associated with the Monoceros ring system in the second and third Galactic quadrants at distances of 6-20 kpc, we also find a several times larger overdensity of giants in the same distance range concentrated in the direction of the ancient constellation Argo. Isodensity contours of the large structure suggest that it is highly elongated and inclined by about 3 deg to the disk, although details of the structure -- including the actual location of highest density, overall extent, true shape -- and its origin, remain unknown because only a fraction of it lies outside highly dust-obscured, low latitude regions. Nevertheless, our results suggest that the 2MASS M giant overdensity previously claimed to represent the core of a dwarf galaxy in Canis Major (l ~ 240 deg) is an artifact of a dust extinction window opening to the overall density rise to the more significant Argo structure centered at larger longitude (l ~ 290 +- 10 deg, b ~ -4 +- 2 deg).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا