The Tully-Fisher relation of distant cluster galaxies


Abstract in English

We have measured maximum rotation velocities (Vrot) for a sample of 111 emission-line galaxies with 0.1 < z < 1, observed in the fields of 6 clusters. From these data we construct matched samples of 58 field and 22 cluster galaxies, covering similar ranges in redshift (0.25 < z < 1.0) and luminosity (M_B < -19.5 mag), and selected in a homogeneous manner. We find the distributions of M_B, Vrot, and scalelength, to be very similar for the two samples. However, using the Tully-Fisher relation (TFR) we find that cluster galaxies are systematically offset with respect to the field sample by -0.7+-0.2 mag. This offset is significant at 3 sigma and persists when we account for an evolution of the field TFR with redshift. Extensive tests are performed to investigate potential differences between the measured emission lines and derived rotation curves of the cluster and field samples. However, no such differences which could affect the derived Vrot values and account for the offset are found. The most likely explanation for the TFR offset is that giant spiral galaxies in distant clusters are on average brighter, for a given rotation velocity, than those in the field. We discuss the potential mechanisms responsible for this, and consider alternative explanations.

Download