Do you want to publish a course? Click here

Scintillation Response of Liquid Xenon to Low Energy Nuclear Recoils

181   0   0.0 ( 0 )
 Added by Daniel McKinsey Dr.
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Liquid Xenon (LXe) is expected to be an excellent target and detector medium to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs). Knowledge of LXe ionization and scintillation response to low energy nuclear recoils expected from the scattering of WIMPs by Xe nuclei is important for determining the sensitivity of LXe direct detection experiments. Here we report on new measurements of the scintillation yield of Xe recoils with kinetic energy as low as 10 keV. The dependence of the scintillation yield on applied electric field was also measured in the range of 0 to 4 kV/cm. Results are in good agreement with recent theoretical predictions that take into account the effect of biexcitonic collisions in addition to the nuclear quenching effect.



rate research

Read More

XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signal (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield leff and the absolute ionization yield Q_y, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.
We present measurements of the scintillation pulse shape in liquid xenon for nuclear recoils (NR) and electronic recoils (ER) at electric fields of 0 to 0.5 kV/cm for energies $<$ 15 keV and $<$ 70 keV electron-equivalent, respectively. The average pulse shapes are well-described by an effective model with two exponential decay components, where both decay times are fit parameters. We find significant broadening of the pulse for ER due to delayed luminescence from the recombination process. In addition to the effective model, we fit a model describing the recombination luminescence for ER at zero field and obtain good agreement. We estimate the best performance of a combined S2/S1 and pulse shape ER/NR discrimination and show that even with 2 ns time resolution, the improvement over S2/S1 discrimination alone is marginal, so that pulse shape discrimination will likely not be useful for future dual-phase liquid xenon experiments looking for elastic dark matter recoil interactions.
Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22 +/- 0.01 in the recoil energy range 40 keV - 70 keV. Under the assumption of a single dominant decay component to the scintillation pulse-shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV < Eee < 30 keV nuclear recoil events is equal to 21.0 ns +/- 0.5 ns. It is observed that for electron recoils T0 rises slowly with energy, having a value ~ 30 ns at Eee ~ 15 keV. Electron and nuclear recoil pulse-shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse-shape.
Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $alpha$-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
370 - Qing Lin , Jialing Fei , Fei Gao 2015
We present new measurements of the scintillation and ionization yields in liquid xenon for low energy electronic (about 3--7 keV$_{ee}$) and nuclear recoils (about 8--20 keV$_{nr}$) at different drift fields from 236 V/cm to 3.93 kV/cm, using a three-dimensional sensitive liquid xenon time projection chamber with high energy and position resolutions. Our measurement of signal responses to nuclear recoils agrees with predictions from the NEST model. However, our measured ionization (scintillation) yields for electronic recoils are consistently higher (lower) than those from the NEST model by about 5 e$^-$/keV$_{ee}$ (ph/keV$_{ee}$) at all scanned drift fields. New recombination parameters based on the Thomas-Imel box model are derived from our data. Given the lack of precise measurement of scintillation and ionization yields for low energy electronic recoils in liquid xenon previously, our new measurement provides so far the best available data covering low energy region at different drift fields for liquid xenon detectors relevant to dark matter searches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا