Do you want to publish a course? Click here

A Photometric Diagnostic to Aid in the Identification of Transiting Extra-Solar Planets

72   0   0.0 ( 0 )
 Added by Brandon Tingley
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the obstacles in the search for exoplanets via transits is the large number of candidates that must be followed up, few of which ultimately prove to be exoplanets. Any method that could make this process more efficient by somehow identifying the best candidates and eliminating the worst would therefore be very useful. Seager and Mallen-Ornelas (2003) demonstrated that it was possible to discern between blends and exoplanets using only the photometric characteristics of the transits. However, these techniques are critically dependent on the shape of the transit, characterization of which requires very high precision photometry of a sort that is atypical for candidates identified from transit searches. We present a method relying only on transit duration, depth, and period, which require much less precise photometry to determine accurately. The numerical tool we derive, the exoplanet diagnostic eta, is intended to identify the subset of candidates from a transit search that is most likely to contain exoplanets, and thus most worthy of subsequent follow-up studies. The effectiveness of the diagnostic is demonstrated with its success in separating modeled exoplanetary transits and interlopers, and by applying it to actual OGLE transit candidates.



rate research

Read More

86 - H. K. C. Yee 2002
Searching for transits provides a very promising technique for finding close-in extra-solar planets. Transiting planets present the advantage of allowing one to determine physical properties such as mass and radius unambiguously. The EXPLORE (EXtra-solar PLanet Occultation REsearch) project is a transit search project carried out using wide-field CCD imaging cameras on 4-m class telescopes, and 8-10m class telescopes for radial velocity verification of the photometric candidates. We describe some of the considerations that go into the design of the EXPLORE transit search to maximize the discovery rate and minimize contaminating objects that mimic transiting planets. We show that high precision photometry (2 to 10 millimag) and high time sampling (few minutes) are crucial for sifting out contaminating signatures, such as grazing binaries. We have completed two searches using the 8k MOSAIC camera at the CTIO4m and the CFH12k camera at CFHT, with runs covering 11 and 16 nights, respectively. We obtained preliminary light curves for approximately 47,000 stars with better than ~1% photometric precision. A number of light curves with flat-bottomed eclipses consistent with being produced by transiting planets has been discovered. Preliminary results from follow-up spectroscopic observations using the VLT UVES spectrograph and the Keck HIRES spectrograph obtained for a number of the candidates are presented. Data from four of these can be interpreted consistently as possible planet candidates, although further data are still required for definitive confirmations.
108 - Aviv Ofir 2008
Transiting planets manifest themselves by a periodic dimming of their host star by a fixed amount. On the other hand, light curves of transiting circumbinary (CB) planets are expected to be neither periodic nor to have a single depth while in transit. These propertied make the popular transit finding algorithm BLS almost ineffective so a modified version of BLS for the identification of CB planets was developed - CB-BLS. We show that using this algorithm it is possible to find CB planets in the residuals of light curves of eclipsing binaries that have noise levels of 1% and more - quality that is routinely achieved by current ground-based transit surveys. Previous searches for CB planets using variation of eclipse times minima of CM Dra and elsewhere are more closely related to radial velocity than to transit searches and so are quite distinct from CB-BLS. Detecting CB planets is expected to have significant impact on our understanding of exoplanets in general, and exoplanet formation in particular. Using CB-BLS will allow to easily harness the massive ground- and space- based photometric surveys in operation to look for these hard-to-find objects.
We present a model of the stellar populations in the fields observed by one of the SuperWASP-N cameras in the 2004 observing season. We use the Besancon Galactic model to define the range of stellar types and metallicities present, and populate these objects with transiting extra-solar planets using the metallicity relation of Fischer & Valenti (2005). We investigate the ability of SuperWASP to detect these planets in the presence of realistic levels of correlated systematic noise (`red noise). We find that the number of planets that transit with a signal-to-noise ratio of 10 or more increases linearly with the number of nights of observations. Based on a simulation of detection rates across 20 fields observed by one camera, we predict that a total of 18.6 pm 8.0 planets should be detectable from the SuperWASP-N 2004 data alone. The best way to limit the impact of co-variant noise and increase the number of detectable planets is to boost the signal-to-noise ratio, by increasing the number of observed transits for each candidate transiting planet. This requires the observing baseline to be increased, by spending a second observing season monitoring the same fields.
Exoplanet surveys have confirmed one of humanitys (and all teenagers) worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet that would be detectable. The statistics of exo-Jupiters indicate that the Solar System is unusual at the ~1% level among Sun-like stars (or ~0.1% among all stars). But why are we different? Successful formation models for both the Solar System and exoplanet systems rely on two key processes: orbital migration and dynamical instability. Systems of close-in super-Earths or sub-Neptunes require substantial radial inward motion of solids either as drifting mm- to cm-sized pebbles or migrating Earth-mass or larger planetary embryos. We argue that, regardless of their formation mode, the late evolution of super-Earth systems involves migration into chains of mean motion resonances, generally followed by instability when the disk dissipates. This pattern is likely also ubiquitous in giant planet systems. We present three models for inner Solar System formation -- the low-mass asteroid belt, Grand Tack, and Early Instability models -- each invoking a combination of migration and instability. We identify bifurcation points in planetary system formation. We present a series of events to explain why our Solar System is so weird. Jupiters core must have formed fast enough to quench the growth of Earths building blocks by blocking the flux of inward-drifting pebbles. The large Jupiter/Saturn mass ratio is rare among giant exoplanets but may be required to maintain Jupiters wide orbit. The giant planets instability must have been gentle, with no close encounters between Jupiter and Saturn, also unusual in the larger (exoplanet) context. Our Solar System system is thus the outcome of multiple unusual, but not unheard of, events.
262 - C. A. Watson 2010
All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. It is, however, possible to determine the inclination angle, i, between the rotation axis of a star and an observers line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P_rot) and the stellar radius (R_star). This allows the removal of the sin i dependency of spectroscopically derived extra-solar planet masses under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis. We have carried out an extensive literature search and present a catalogue of v sin i, P_rot, and R_star estimates for exoplanet host stars. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R_star estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This allows proper 1-sigma two-tailed confidence limits to be placed on the derived sin is along with the transit probability for each planet to be determined. While a small proportion of systems yield sin is significantly greater than 1, most likely due to poor P_rot estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of ~90 degrees and high transit probabilities. In total, we estimate the true masses of 133 extra-solar planets. Of these, only 6 have revised masses that place them above the 13 Jupiter mass deuterium burning limit. Our work reveals a population of high-mass planets with low eccentricities and we speculate that these may represent the signature of different planetary formation mechanisms at work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا