Do you want to publish a course? Click here

New Studies of the Pulsar Wind Nebula in the Supernova Remnant CTB 80

93   0   0.0 ( 0 )
 Added by Victoria Komarova
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the kinematics of the pulsar wind nebula (PWN) associated with PSR B1951+32 in the old supernova remnant CTB 80 using the Fabry-Perot interferometer of the 6m Special Astrophysical Observatory telescope. In addition to the previously known expansion of the system of bright filaments with a velocity of 100-200km/s, we detected weak high-velocity features in the H-alpha line at least up to velocities of 400-450km/s. We analyzed the morphology of the PWN in the H-alpha, [SII], and [OIII] lines using HST data and discuss its nature. The shape of the central filamentary shell, which is determined by the emission in the [OIII] line and in the radio continuum, is shown to be consistent with the bow-shock model for a significant (about 60 degrees) inclination of the pulsars velocity vector to the plane of the sky. In this case, the space velocity of the pulsar is twice higher than its tangential velocity, i.e., it reaches ~500 km/s, and PSR B1951+32 is the first pulsar whose line-of-sight velocity (of about 400 km/s) has been estimated from the PWN observations. The shell-like H-alpha-structures outside the bow shock front in the east and the west may be associated with both the pulsars jets and the pulsar-wind breakthrough due to the layered structure of the extended CTB 80 shell.



rate research

Read More

129 - Xianghua Li 2020
We present a radio polarization study of the supernova remnant CTB 80 based on images at 1420 MHz from the Canadian Galactic plane survey, at 2695 MHz from the Effelsberg survey of the Galactic plane, and at 4800 MHz from the Sino-German 6cm polarization survey of the Galactic plane. We obtained a rotation measure (RM) map using polarization angles at 2695 MHz and 4800 MHz as the polarization percentages are similar at these two frequencies. RM exhibits a transition from positive values to negative values along one of the shells hosting the pulsar PSR B1951+32 and its pulsar wind nebula. The reason for the change of sign remains unclear. We identified a partial shell structure, which is bright in polarized intensity but weak in total intensity. This structure could be part of CTB 80 or part of a new supernova remnant unrelated to CTB 80.
87 - M. Araya , C. Herrera 2021
CTB 80 (G69.0+2.7) is a relatively old (50--80 kyr) supernova remnant (SNR) with a complex radio morphology showing three extended radio arms and a radio and X-ray nebula near the location of the pulsar PSR B1951+32. We report on a study of the GeV emission in the region of CTB 80 with emph{Fermi}-LAT data. An extended source with a size of 1.3$^circ$, matching the size of the infrared shell associated to the SNR, was discovered. The GeV emission, detected up to an energy of $sim 20$ GeV, is more significant at the location of the northern radio arm where previous observations imply that the SNR shock is interacting with ambient material. Both hadronic and leptonic scenarios can reproduce the multiwavelength data reasonably well. The hadronic cosmic ray energy density required is considerably larger than the local Galactic value and the gamma-ray leptonic emission is mainly due to bremsstrahlung interactions. We conclude that GeV particles are still trapped or accelerated by the SNR producing the observed high-energy emission when interacting with ambient material.
Using time-resolved two-dimensional aperture photometry we have put upper limits on the pulsed emission from two proposed optical counterparts for PSR B1951+32. Our pulsed upper limits of m_{vpulsed}>23.3, m_{bpulsed}>24.4$, for the first candidate and m_{vpulsed}>23.6$, m_{bpulsed}>24.3 for the second, make it unlikely that either of these is, in fact, the pulsar. We discuss three further candidates, but also reject these on the basis of timing results. A search of a 5.5arcs x 5.5arcs area centred close to these stars failed to find any significant pulsations at the reported pulsar period.
CTB 87 (G74.9+1.2) is an evolved supernova remnant (SNR) which hosts a peculiar pulsar wind nebula (PWN). The X-ray peak is offset from that observed in radio and lies towards the edge of the radio nebula. The putative pulsar, CXOU~J201609.2+371110, was first resolved with textit{Chandra} and is surrounded by a compact and a more extended X-ray nebula. Here we use a deep {textit{XMM-Newton}} observation to examine the morphology and evolutionary stage of the PWN and to search for thermal emission expected from a supernova shell or reverse shock interaction with supernova ejecta. We do not find evidence of thermal X-ray emission from the SNR and place an upper limit on the electron density of 0.05~cm$^{-3}$ for a plasma temperature $kTsim 0.8$ keV. The morphology and spectral properties are consistent with a $sim$20~kyr-old relic PWN expanding into a stellar wind-blown bubble. We also present the first X-ray spectral index map from the PWN and show that we can reproduce its morphology by means of 2D axisymmetric relativistic hydrodynamical simulations.
We report the discovery of a partial ~2deg. diameter non-thermal radio shell coincident with Taz, the pulsar wind nebula (PWN) in the error box of the apparently variable gamma-ray source 3EG J1809-2328. We propose that this radio shell is a newly identified supernova remnant (SNR G7.5-1.7) associated with the PWN. The SNR surrounds an amorphous region of thermal X-rays detected in archival ROSAT and ASCA observations putting this system in the mixed-morphology class of supernova remnants. G7.5-1.7 is the fifth such supernova remnant coincident with a bright GeV source, and the fourth containing a pulsar wind nebulae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا