Do you want to publish a course? Click here

Chandra Observations of 12 Luminous Red Quasars

84   0   0.0 ( 0 )
 Added by Tanya Urrutia
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of a study of 12 dust-reddened quasars with 0.4 < z < 2.65 and reddenings in the range 0.15 < E(B-V) < 1.7. We obtained ACIS-S X-ray spectra of these quasars, estimated the column densities towards them, and hence obtained the gas:dust ratios in the material obscuring the quasar. We detect all but one of the red quasars in the X-rays. Even though there is no obvious correlation between the X-ray determined column densities of our sources and their optical color or reddening, all of the sources show absorbed X-ray spectra. When we correct the luminosity for absorption, they can be placed among luminous quasars; therefore our objects belong to the group of high luminosity analogues of the sources contributing to the X-ray background seen in deep X-ray observations. Such sources are also found in serendipitous shallow X-ray surveys. There is a hint that the mean spectral slope of the red quasar is higher than that of normal, unobscured quasars, which could be an indication for higher accretion rates and/or an evolutionary effect. We investigate the number density of these sources compared to type 2 AGN based on the X-ray background and estimate how many moderate luminosity red quasars may be found in deep X-ray fields.



rate research

Read More

We present mid-infrared spectra and photometry of thirteen redshift 0.4<z<1 dust-reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic AGN luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from HST imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass -- bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the OIII 5007 Angstrom emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.
126 - C. Vignali 2006
We report on new Chandra exploratory observations of six candidate Type 2 quasars at z=0.49-0.73 selected among the most [OIII] luminous emitters from the Sloan Digital Sky Survey (SDSS). Under the assumption that [OIII] is a proxy for the intrinsic luminosity of the central source, their predicted rest-frame X-ray luminosities are L(2-10keV)~10^45 erg/s. For two of the targets, the photon statistics are good enough to allow for basic X-ray spectral analyses, which indicate the presence of intrinsic absorption (~10^{22-23} cm^-2) and luminous X-ray emission (L_X>10^44 erg/s). Of the remaining four targets, two are detected with only a few (3-6) X-ray counts, and two are undetected by Chandra. If these four sources have the large intrinsic X-ray luminosities predicted by the [OIII] emission, then their nuclei must be heavily obscured (N_H>few 10^23 cm^-2) and some might be Compton thick (N_H>1.5 10^24 cm^-2). We also present the results for two Type 2 quasar candidates serendipitously lying in the fields of the Chandra targets, and provide an up-to-date compilation of the X-ray properties of eight additional SDSS Type 2 quasars from archival Chandra and XMM-Newton observations (five with moderate-quality X-ray data). The combined sample of 16 SDSS Type 2 quasars (10 X-ray detections) provides further evidence that a considerable fraction of optically selected Type 2 quasars are obscured in the X-ray band (at least all the objects with moderate-quality X-ray spectra), lending further support to the findings presented in Vignali, Alexander and Comastri (2004a) and unification schemes of Active Galactic Nuclei, and confirms the reliability of [OIII] emission in predicting the X-ray emission in obscured quasars.
171 - D. H. McIntosh 1999
We have observed a sample of 22 luminous quasars, in the range 2.0<z<2.5, at 1.6 microns with the near-infrared (NIR) spectrograph FSPEC on the Multiple Mirror Telescope. Our sample contains 13 radio-loud and 9 radio-quiet objects. We have measured the systemic redshifts z_(sys) directly from the strong [O III]5007 line emitted from the narrow-line-region. From the same spectra, we have found that the non-resonance broad H$beta$ lines have a systematic mean redward shift of 520+/-80 km/s with respect to systemic. Such a shift was not found in our identical analysis of the low-redshift sample of Boroson & Green. The amplitude of this redshift is comparable to half the expected gravitational redshift and transverse Doppler effects, and is consistent with a correlation between redshift differences and quasar luminosity. From data in the literature, we confirm that the high-ionization rest-frame ultraviolet broad lines are blueshifted ~550-1050 km/s from systemic, and that these velocity shifts systematically increase with ionization potential. Our results allow us to quantify the known bias in estimating the ionizing flux from the inter-galactic-medium J_(IGM) via the Proximity Effect. Using redshift measurements commonly determined from strong broad line species, like Lyalpha or CIV1549, results in an over-estimation of J_(IGM) by factors of ~1.9-2.3. Similarly, corresponding lower limits on the density of baryon Omega_b will be over-estimated by factors of ~1.4-1.5. However, the low-ionization MgII2798 broad line is within ~50 km/s of systemic, and thus would be the line of choice for determining the true redshift of 1.0<z<2.2 quasars without NIR spectroscopy, and z>3.1 objects using NIR spectroscopy.
We present deep Chandra observations of A3411-12, a remarkable merging cluster that hosts the most compelling evidence for electron re-acceleration at cluster shocks to date. Using the $Y_X-M$ scaling relation, we find $r_{500} sim 1.3$ Mpc, $M_{500} = (7.1 pm 0.7) times 10^{14} M_{rm{odot}}$, $kT=6.5pm 0.1$ keV, and a gas mass of $M_{rm g,500} = (9.7 pm 0.1) times 10^{13} M_odot$. The gas mass fraction within $r_{500}$ is $f_{rm g} = 0.14 pm 0.01$. We compute the shock strength using density jumps to conclude that the Mach number of the merging subcluster is small ($M leq 1.15_{-0.09}^{+0.14}$). We also present pseudo-density, projected temperature, pseudo-pressure, and pseudo-entropy maps. Based on the pseudo-entropy map we conclude that the cluster is undergoing a mild merger, consistent with the small Mach number. On the other hand, radio relics extend over Mpc scale in the A3411-12 system, which strongly suggests that a population of energetic electrons already existed over extended regions of the cluster.
Chandra snapshot observations of the three most distant quasars then known, at redshifts 5.82, 5.99, and 6.28, gave signficant detections even in the short, 6 -- 8 ks, observations. The X-ray to optical luminosity ratios indicate that quasars will be detectable in X-rays if they exist at even larger redshifts. The present observations hint at two exciting discoveries. An extended X-ray source 23 arcsec from SDSS1306+0356 may be a jet emitting inverse Compton radiation from the Cosmic Microwave Background. SDSS 1030+0524 does not appear to be a point source, and may be a gravitationally lensed system, or contain a small scale X-ray jet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا