Do you want to publish a course? Click here

XMM-Newton EPIC and OM Observations of Her X-1 over the 35 d Beat Period and an Anomalous Low State

77   0   0.0 ( 0 )
 Added by Silvia Zane
 Publication date 2005
  fields Physics
and research's language is English
 Authors S. Zane




Ask ChatGPT about the research

We present the results of a series of XMM-Newton EPIC and OM observations of Her X-1, spread over a wide range of the 35 d precession period. We confirm that the spin modulation of the neutron star is weak or absent in the low state - in marked contrast to the main or short-on states. The strong fluorescence emission line at ~6.4 keV is detected in all observations (apart from one taken in the middle of eclipse), with higher line energy, width and normalisation during the main-on state. In addition, we report the detection of a second line near 7 keV in 10 of the 15 observations taken during the low-intensity states of the system. We discuss these observations in the context of previous observations, investigate the origin of the soft and hard X-rays and consider the emission site of the 6.4keV and 7keV emission lines.



rate research

Read More

70 - G. Ramsay 2002
We present spin-resolved X-ray data of the neutron star binary Her X-1. We find evidence that the Iron line at 6.4 keV originates from the same location as the blackbody X-ray component. The line width and energy varies over both the spin period and the 35 day precession period. We also find that the correlation between the soft and hard X-ray light curves varies over the 35 day period.
92 - A.N. Parmar 1999
Results of a 1999 July 8-10 BeppoSAX observation during an anomalous low-state of Her X-1 are presented. The standard on-state power-law and blackbody continuum model is excluded at high confidence unless partial covering is included. This gives a power-law photon index of 0.63 +/- 0.02 and implies that 0.28 +/- 0.03 of the flux undergoes additional absorption of (27 +/- 7) 10^22 atom/cm2. 11% of the observed 0.1-10 keV flux is from the 0.068 +/- 0.015 keV blackbody. 1.237747(2) s pulses with a semi-amplitude of 2.1 +/- 0.8% are detected at >99.5% confidence and confirmed by RXTE measurements. This implies that Her X-1 underwent substantial spin-down close to the start of the anomalous low-state. The spectral and temporal changes are similar to those recently reported from 4U1626-67. These may result from a strongly warped disk that produces a spin-down torque. The X-ray source is then mostly viewed through the inner regions of the accretion disk. A similar mechanism could be responsible for the Her X-1 anomalous low-states. Shadowing by such an unusually warped disk could produce observable effects in the optical and UV emission from the companion star.
We report the results of preliminary analysis of the XMM_Newton EPIC and RGS observations of the candidate black-hole binary LMC X-3 between February and June 2000. The observations covered both the soft and the hard X-ray spectral states. The hard-state spectra were dominated by a power-law component with a photon index Gamma = 1.9 +/- 0.1. The soft-state spectra consisted of a thermal component with a multi-colour disk temperature T_in = 0.9 keV and a power-law tail with Gamma ~ 2.5--2.7. The model in which the X-rays from LMC X-3 in the high-soft state are powered by a strong stellar wind from a massive companion is not supported by the small line-of-sight absorption (n_H <~ 10^{21} cm^{-2}) deduced from the RGS data. The transition from the soft to the hard state appears to be a continuous process associated with the changes in the mass-transfer rate.
We present the results of two XMM-Newton observations of the ultraluminous X-ray source (ULX) NGC 5204 X-1. The EPIC spectra are well-fit by the standard spectral model of a black-hole X-ray binary, comprising a soft multi-colour disc blackbody component plus a harder power-law continuum. The cool (kT_in ~ 0.2 keV) inner-disc temperature required by this model favours the presence of an intermediate-mass black hole (IMBH) in this system, though we highlight a possible anomaly in the slope of the power-law continuum in such fits. We discuss the interpretation of this and other, non-standard spectral modelling of the data.
We report the discovery of strong soft X-ray emission lines and a hard continuum above 2 keV in the Narrow-Line Seyfert 1 galaxy Mrk 335 during an extremely low X-ray flux state. Mrk 335 was observed for 22 ks by XMM-Newton in July 2007 as a Target of Opportunity to examine it in its X-ray low-flux state, which was discovered with Swift. Long-term light curves suggest that this is the lowest flux state this AGN has ever been seen in. However, Mrk 335 is still sufficiently bright that its X-ray properties can be studied in detail. The X-ray continuum spectrum is very complex and requires several components to model. Statistically, partial covering and blurred reflection models work well. We confirm the presence of a strong narrow Fe line at 6.4 keV. High-resolution spectroscopy with the XMM-RGS reveals strong, soft X-ray emission lines not detected in previous, higher signal-to-noise, XMM-Newton observations, such as: highly ionized Fe lines, O VII, Ne IX and Mg XI lines. The optical/UV fluxes are similar to those previously measured with Swift. Optical spectroscopy taken in 2007 September do not show any changes to optical spectra obtained 8 years earlier.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا