A near-infrared and optical photometric study of the Sculptor dwarf spheroidal galaxy: implications for the metallicity spread


Abstract in English

We present here a detailed study of the Sculptor dSph galaxy red giant branch (RGB) and horizontal branch (HB) morphology, combining new near-infrared photometry from CIRSI, with optical data from the ESO WFI. For a Sculptor-like old and generally metal-poor system, the position of RGB stars on the colour-magnitude diagram is mainly metallicity dependent. The advantage of using optical-NIR colours is that the position of the RGB locus is much more sensitive to metallicity than with optical colours alone. In contrast the horizontal branch (HB) morphology is strongly dependent on both metallicity and age. Therefore a detailed study of both the RGB in optical-NIR colours and the HB can help break the age-metallicity degeneracy. Our measured photometric width of the Sculptor giant branch corresponds to a range in metallicity of 0.75 dex. We detect the RGB and AGB bumps in both the NIR and optical luminosity functions, and derive from them a mean metallicity of [M/H] = -1.3 +/- 0.1. From isochrone fitting we derive a mean metallicity of [Fe/H] = -1.42 with a dispersion of 0.2 dex. These photometric estimators are for the first time consistent with individual metallicity measurements derived from spectroscopic observations. No spatial gradient is detected in the RGB morphology within a radius of 13 arcmin, twice the core radius. On the other hand, a significant gradient is observed in the HB morphology index, confirming the `second parameter problem present in this galaxy. These observations are consistent with an early extended period of star formation continuing in time for a few Gyr. (Abridged)

Download