Do you want to publish a course? Click here

Self-enrichment in globular clusters. I. An analytic approach

48   0   0.0 ( 0 )
 Added by Simone Recchi
 Publication date 2005
  fields Physics
and research's language is English
 Authors S. Recchi




Ask ChatGPT about the research

By means of analytical calculations, we explore the self-enrichment scenario for Globular Cluster formation. According to this scenario, an initial burst of star formation occurs inside the core radius of the initial gaseous distribution. The outward-propagating shock wave sweeps up a shell in which gravitational instabilities may arise, leading to the formation of a second, metal-enriched, population of stars. We find a minimum mass of the proto-globular cluster of the order of 10^6 solar masses. We also find that the observed spread in the Magnitude-Metallicity relation can be explained assuming cluster-to-cluster variations of some parameters like the thermalization efficiency, the mixing efficiency and the Initial Mass Function, as well as variations of the external pressure.



rate research

Read More

A significant fraction of stars in globular clusters (about 70%-85%) exhibit peculiar chemical patterns with strong abundance variations in light elements along with constant abundances in heavy elements. These abundance anomalies can be created in the H-burning core of a first generation of fast rotating massive stars and the corresponding elements are convoyed to the stellar surface thanks to rotational induced mixing. If the rotation of the stars is fast enough this matter is ejected at low velocity through a mechanical wind at the equator. It then pollutes the ISM from which a second generation of chemically anomalous stars can be formed. The proportion of anomalous to normal star observed today depends on at least two quantities : (1) the number of polluter stars; (2) the dynamical history of the cluster which may lose during its lifetime first and second generation stars in different proportions. Here we estimate these proportions based on dynamical models for globular clusters. When internal dynamical evolution and dissolution due to tidal forces are accounted for, starting from an initial fraction of anomalous stars of 10% produces a present day fraction of about 25%, still too small with respect to the observed 70-85%. In case gas expulsion by supernovae is accounted for, much higher fraction is expected to be produced. In this paper we also address the question of the evolution of the second generation stars that are He-rich, and deduce consequences for the age determination of globular clusters.
215 - Mark Gieles 2018
We present a model for the concurrent formation of globular clusters (GCs) and supermassive stars (SMSs, $>10^3,{rm M}_odot$) to address the origin of the HeCNONaMgAl abundance anomalies in GCs. GCs form in converging gas flows and accumulate low-angular momentum gas, which accretes onto protostars. This leads to an adiabatic contraction of the cluster and an increase of the stellar collision rate. A SMS can form via runaway collisions if the cluster reaches sufficiently high density before two-body relaxation halts the contraction. This condition is met if the number of stars $gtrsim10^6$ and the gas accretion rate $gtrsim10^5,{rm M}_odot$/Myr, reminiscent of GC formation in high gas-density environments, such as -- but not restricted to -- the early Universe. The strong SMS wind mixes with the inflowing pristine gas, such that the protostars accrete diluted hot-hydrogen burning yields of the SMS. Because of continuous rejuvenation, the amount of processed material liberated by the SMS can be an order of magnitude higher than its maximum mass. This `conveyor-belt production of hot-hydrogen burning products provides a solution to the mass budget problem that plagues other scenarios. Additionally, the liberated material is mildly enriched in helium and relatively rich in other hot-hydrogen burning products, in agreement with abundances of GCs today. Finally, we find a super-linear scaling between the amount of processed material and cluster mass, providing an explanation for the observed increase of the fraction of processed material with GC mass. We discuss open questions of this new GC enrichment scenario and propose observational tests.
Galactic globular cluster (GC) stars exhibit abundance patterns which are not shared by their field counterparts, In the framework of the widely accepted self-enrichment scenario for GCs, we present a new method to derive the Initial Mass Function (IMF) of the polluter stars, by using the observed O/Na abundance distribution. We focus on NGC 2808, a GC for which the largest sample of O and Na abundance determinations is presently available. We consider two classes of possible culprits : massive Asymptotic Giant Branch (AGB) stars (4-9 Msun) and winds of massive stars (WMS) in the mass range 10-100 Msun. We obtain upper limits for the slope of the IMF (assumed to be given by a power-law) of the stars initially more massive than the present turnoff mass. We also derive lower limits for the amount of stellar residues. We find that the polluter IMF had to be much flatter than presently observed IMFs in stellar clusters, in agreement with the results of two other methods for GC IMF determination. Additionaly, we find that the present mass of the GC should be totally dominated by stellar remnants if the polluters were AGB stars, but not so in the case of WMS. We critically analyse the advantages and shortcomings of each potential polluter class, and we find the WMS scenario more attractive.
134 - S. S. Larsen 2012
Recently, high-dispersion spectroscopy has demonstrated conclusively that four of the five globular clusters (GCs) in the Fornax dwarf spheroidal galaxy are very metal-poor with [Fe/H]<-2. The remaining cluster, Fornax 4, has [Fe/H]=-1.4. This is in stark contrast to the field star metallicity distribution which shows a broad peak around [Fe/H]=-1 with only a few percent of the stars having [Fe/H]<-2. If we only consider stars and clusters with [Fe/H]<-2 we thus find an extremely high GC specific frequency, SN=400, implying by far the highest ratio of GCs to field stars known anywhere. We estimate that about 1/5-1/4 of all stars in the Fornax dSph with [Fe/H]<-2 belong to the four most metal-poor GCs. These GCs could, therefore, at most have been a factor of 4-5 more massive initially. Yet, the Fornax GCs appear to share the same anomalous chemical abundance patterns known from Milky Way GCs, commonly attributed to the presence of multiple stellar generations within the clusters. The extreme ratio of metal-poor GC- versus field stars in the Fornax dSph is difficult to reconcile with scenarios for self-enrichment and early evolution of GCs in which a large fraction (90%-95%) of the first-generation stars have been lost. It also suggests that the GCs may not have formed as part of a larger population of now disrupted clusters with an initial power-law mass distribution. The Fornax dSph may be a rosetta stone for constraining theories of the formation, self-enrichment and early dynamical evolution of star clusters.
Star-to-star dispersion of r-process elements has been observed in a significant number of old, metal-poor globular clusters. We investigate early-time neutron-star mergers as the mechanism for this enrichment. Through both numerical modeling and analytical arguments, we show that neutron-star mergers cannot be induced through dynamical interactions early in the history of the cluster, even when the most liberal assumptions about neutron-star segregation are assumed. Therefore, if neutron-star mergers are the primary mechanism for r-process dispersion in globular clusters, they likely result from the evolution of isolated, primordial binaries in the clusters. Through population modeling, we find that moderate fractions of GCs with enrichment are only possible when a significant number of double neutron-star progenitors proceed through Case BB mass transfer --- under various assumptions for the initial properties of globular clusters, a neutron-star merger with the potential for enrichment will occur in ~15-60% (~30-90%) of globular clusters if this mass transfer proceeds stably (unstably). The strong anti-correlation between the pre-supernova orbital separation and post-supernova systemic velocity due to mass loss in the supernova leads to efficient ejection of most enrichment candidates from their host clusters. Thus, most enrichment events occur shortly after the double neutron stars are born. This requires star-forming gas that can absorb the r-process ejecta to be present in the globular cluster 30-50 Myr after the initial burst of star formation. If scenarios for redistributing gas in globular clusters cannot act on these timescales, the number of neutron-star merger enrichment candidates drops severely, and it is likely that another mechanism, such as r-process enrichment from collapsars, is at play.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا