Do you want to publish a course? Click here

The Interpretations For the Low and High Frequency QPO Correlations of X-ray Sources Among White Dwarfs, Neutron Stars and Black Holes

105   0   0.0 ( 0 )
 Added by Chengmin Zhang
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is found that there exists an empirical linear relation between the high frequency $ high$ and low frequency $ low$ of quasi-periodic oscillations (QPOs) for black hole candidate (BHC), neutron star (NS) and white dwarf (WD) in the binary systems, which spans five orders of magnitude in frequency. For the NS Z (Atoll) sources, $ u_{high}$ and $ u_{low}$ are identified as the lower kHz QPO frequency and horizontal branch oscillations (HBOs) $ h$ (broad noise components); for the black hole candidates and low-luminosity neutron stars, they are the QPOs and broad noise components at frequencies between 1 and 10 Hz; for WDs, they are the ``dwarf nova oscillations (DNOs) and QPOs of cataclysmic variables (CVs). To interpret this relation, our model ascribes $ u_{high}$ to the Alfven wave oscillation frequency at a preferred radius and $ u_{low}$ to the same mechanism at another radius. Then, we can obtain $ low = 0.08 high$ and the relation between the upper kHz QPO frequency $ t$ and HBO to be $ h simeq 56 ({rm Hz}) ( t/{rm kHz})^{2}$, which are in accordance with the observed empirical relations. Furthermore, some implications of model are discussed, including why QPO frequencies of white dwarfs and neutron stars span five orders of magnitude in frequency.



rate research

Read More

This white paper highlights compact object and fundamental physics science opportunities afforded by high-throughput broadband (0.1-60 keV) X-ray polarization observations. X-ray polarimetry gives new observables with geometric information about stellar remnants which are many orders of magnitude too small for direct imaging. The X-ray polarimetric data also reveal details about the emission mechanisms and the structure of the magnetic fields in and around the most extreme objects in the Universe. Whereas the Imaging X-ray Polarimetry Explorer (IXPE) to be launched in 2021 will obtain first results for bright objects, a follow-up mission could be one order of magnitude more sensitive and would be able to use a broader bandpass to perform physics type experiments for representative samples of sources.
42 - Enrico Costa 2001
In astronomy there are basically four kinds of observations to extract the information carried by electromagnetic radiation: photometry, imaging, spectroscopy and polarimetry. By optimal exploitation of the first three techniques, X-ray astronomy has been able to unveil the violent world of compact high energy sources. Here we report on a new instrument that brings high efficiency also to X-ray polarimetry, the last unexplored field of X-ray astronomy. It will then be possible to resolve the internal structures of compact sources which otherwise would remain inaccessible, even to X-ray interferometry1. Polarimetry could provide a direct, visual picture of the state of matter under extreme magnetic and gravitational fields by measuring the radiation polarized through interaction with the highly asymmetric matter distribution (accretion disk) and with the magnetic field. The new instrument derives the polarization information from the track of the photoelectrons imaged by a finely subdivided gas detector. Its great improvement of sensitivity (at least two orders of magnitude) will allow direct exploration of the most dramatic objects of the X-ray sky.
132 - Rob Fender 2012
We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.
The properties of the aperiodic variability in X-ray binaries with black holes are considered. The power spectra of the luminosity variability for a flat accretion disk that is an emission source with a power-law energy spectrum have been modeled. At low frequencies the derived power spectrum has the form of a power law with a slope $rhoapprox-1$ and a cutoff at a frequency approximately equal to the fluctuations characteristic frequency at the disk inner edge; at higher frequencies the power spectrum has a complex form. The high-frequency variability is suppressed due to the arrival time delays of the photons emerging in the different parts of the disk. The presence of azimuthal accretion rate fluctuations in the disk and the azimuthal non-uniformity of the disk surface brightness in the observers imaginary plane caused by the relativistic effects give rise to an additional variability at frequencies $sim$200 Hz.
Double white dwarf (double-WD) binaries may merge within a Hubble time and produce high-mass WDs. Compared to other high-mass WDs, the double-WD merger products have higher velocity dispersion because they are older. With the power of Gaia data, we show strong evidence for double-WD merger products among high-mass WDs by analyzing the transverse-velocity distribution of more than a thousand high-mass WDs (0.8--1.3 $M_odot$). We estimate that the fraction of double-WD merger products in our sample is about 20 %. We also obtain a precise double-WD merger rate and its mass dependence. Our merger rate estimates are close to binary population synthesis results and support the idea that double-WD mergers may contribute to a significant fraction of type Ia supernovae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا