Do you want to publish a course? Click here

Flare X-ray observations of AB Dor: evidence for Stellar Coronal Opacity

52   0   0.0 ( 0 )
 Added by Marco Matranga
 Publication date 2005
  fields Physics
and research's language is English
 Authors M. Matranga




Ask ChatGPT about the research

X-ray spectra of the late-type star AB Dor, obtained with the XMM-Newton satellite are analysed. AB Dor was particularly active during the observations. An emission measure reconstruction technique is employed to analyse flare and quiescent spectra, with emphasis on the Fe XVII 15-17 A wavelength region. The Fe XVII 16.78 A/15.01 A line ratio increases significantly in the hotter flare plasma. This change in the ratio is opposite to the theoretical predictions and is attributed to the scattering of 15.01 A line photons from the line-of-sight. The escape probability technique indicates an optical depth of about 0.4 for the 15.01 A line. During the flare, the electron density is 4.4*10^10 cm^-3 and the fractional Fe abundance is 0.5 +/- 0.1 of the solar photospheric value. Using these parameters a path length of about 8,000 km is derived. There is no evidence for opacity in the quiescent X-ray spectrum of the star.



rate research

Read More

Studies of fundamental parameters of very low-mass objects are indispensable to provide tests of stellar evolution models that are used to derive theoretical masses of brown dwarfs and planets. However, only objects with dynamically determined masses and precise photometry can effectively evaluate the predictions of stellar models. AB Dor C (0.090 solar masses) has become a prime benchmark for calibration of theoretical evolutionary models of low-mass young stars. One of the ambiguities remaining in AB Dor C is the possible binary nature of this star. We observed AB Dor C with the VLTI/AMBER instrument in low-resolution mode at the J, H and K bands. The interferometric observables at the K-band are compatible with a binary brown dwarf system with tentative components AB Dor Ca/Cb with a K-band flux ratio of 5$pm$1% and a separation of 38$pm$1 mas. This implies theoretical masses of 0.072$pm$0.013 M$_{rm odot}$ and 0.013$pm$0.001 M$_{rm odot}$ for each component, near the hydrogen-burning limit for AB Dor Ca, and near the deuterium-burning limit, straddling the boundary between brown dwarfs and giant planets, for AB Dor Cb. The possible binarity of AB Dor C alleviates the disagreement between observed magnitudes and theoretical mass-luminosity relationships.
Coronal mass ejections (CMEs), often associated with flares, are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to 10^4 times higher, and CME effects on stellar physics and circumstellar environments are predicted to be significant. However, stellar CMEs remain observationally unexplored. Using time-resolved high-resolution X-ray spectroscopy of a stellar flare on the active star HR 9024 observed with Chandra/HETGS, we distinctly detected Doppler shifts in S XVI, Si XIV, and Mg XII lines that indicate upward and downward motions of hot plasmas (~10-25 MK) within the flaring loop, with velocity v~100-400 km/s, in agreement with a model of flaring magnetic tube. Most notably, we also detected a later blueshift in the O VIII line which reveals an upward motion, with v=90+/-30 km/s, of cool plasma (~4 MK), that we ascribe to a CME coupled to the flare. From this evidence we were able to derive a CME mass of 1x10^21 g and a CME kinetic energy of 5x10^34 erg. These values provide clues in the extrapolation of the solar case to higher activity levels, suggesting that CMEs could indeed be a major cause of mass and angular momentum loss.
Although chromospheric activity cycles have been studied in a larger number of late-type stars for quite some time, very little is known about coronal activity-cycles in other stars and their similarities or dissimilarities with the solar activity cycle. While it is usually assumed that cyclic activity is present only in stars of low to moderate activity, we investigate whether the ultra-fast rotator AB Dor, a K dwarf exhibiting signs of substantial magnetic activity in essentially all wavelength bands, exhibits a X-ray activity cycle in analogy to its photospheric activity cycle of about 17 years and possible correlations between these bands. We analysed the combined optical photometric data of AB Dor A, which span ~35 years. Additionally, we used ROSAT and XMM-Newton X-ray observations of AB Dor A to study the long-term evolution of magnetic activity in this active K dwarf over nearly three decades and searched for X-ray activity cycles and related photometric brightness changes. AB Dor A exhibits photometric brightness variations ranging between 6.75 < Vmag < 7.15 while the X-ray luminosities range between 29.8 < log LX [erg/s] < 30.2 in the 0.3-2.5 keV. As a very active star, AB Dor A shows frequent X-ray flaring, but, in the long XMM-Newton observations a kind of basal state is attained very often. This basal state probably varies with the photospheric activity-cycle of AB Dor A which has a period of ~17 years, but, the X-ray variability amounts at most to a factor of ~2, which is, much lower than the typical cycle amplitudes found on the Sun.
This paper reports measurements of Sgr A* made with NACO in L -band (3.80 um), Ks-band (2.12 um) and H-band (1.66 um) and with VISIR in N-band (11.88 um) at the ESO VLT, as well as with XMM-Newton at X-ray (2-10 keV) wavelengths. On 4 April, 2007, a very bright flare was observed from Sgr A* simultaneously at L-band and X-ray wavelengths. No emission was detected using VISIR. The resulting SED has a blue slope (beta > 0 for nuL_nu ~ nu^beta, consistent with nuL_nu ~ nu^0.4) between 12 micron and 3.8 micron. For the first time our high quality data allow a detailed comparison of infrared and X-ray light curves with a resolution of a few minutes. The IR and X-ray flares are simultaneous to within 3 minutes. However the IR flare lasts significantly longer than the X-ray flare (both before and after the X-ray peak) and prominent substructures in the 3.8 micron light curve are clearly not seen in the X-ray data. From the shortest timescale variations in the L-band lightcurve we find that the flaring region must be no more than 1.2 R_S in size. The high X-ray to infrared flux ratio, blue nuL_nu slope MIR to L -band, and the soft nuL_nu spectral index of the X-ray flare together place strong constraints on possible flare emission mechanisms. We find that it is quantitatively difficult to explain this bright X-ray flare with inverse Compton processes. A synchrotron emission scenario from an electron distribution with a cooling break is a more viable scenario.
The GOES X1.5 class flare that occurred on August 30,2002 at 1327:30 UT is one of the few events detected so far at submillimeter wavelengths. We present a detailed analysis of this flare combining radio observations from 1.5 to 212 GHz (an upper limit of the flux is also provided at 405 GHz) and X-ray. Although the observations of radio emission up to 212 GHz indicates that relativistic electrons with energies of a few MeV were accelerated, no significant hard X-ray emission was detected by RHESSI above ~ 250 keV. Images at 12--20 and 50--100 keV reveal a very compact, but resolved, source of about ~ 10 x 10. EUV TRACE images show a multi-kernel structure suggesting a complex (multipolar) magnetic topology. During the peak time the radio spectrum shows an extended flatness from ~ 7 to 35 GHz. Modeling the optically thin part of the radio spectrum as gyrosynchrotron emission we obtained the electron spectrum (spectral index delta, instantaneous number of emitting electrons). It is shown that in order to keep the expected X-ray emission from the same emitting electrons below the RHESSI background at 250 keV, a magnetic field above 500 G is necessary. On the other hand, the electron spectrum deduced from radio observations >= 50 GHz is harder than that deduced from ~ 70 - 250 keV X-ray data, meaning that there must exist a breaking energy around a few hundred keV. During the decay of the impulsive phase, a hardening of the X-ray spectrum is observed which is interpreted as a hardening of the electron distribution spectrum produced by the diffusion due to Coulomb collisions of the trapped electrons in a medium with an electron density of n_e ~ 3E10 - 5E10 cm-3.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا