Do you want to publish a course? Click here

Testing the locality of transport in self-gravitating accretion discs - II. The massive disc case

59   0   0.0 ( 0 )
 Added by Giuseppe Lodato
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we extend our previous analysis (Lodato & Rice 2004) of the transport properties induced by gravitational instabilities in cooling, gaseous accretion discs to the case where the disc mass is comparable to the central object. In order to do so, we have performed global, three-dimensional smoothed particle hydrodynamics simulations of massive discs. These new simulations show a much more complex temporal evolution with respect to the less massive case. Whereas in the low disc mass case a self-regulated, marginally stable state (characterized by an approximately constant radial profile of the stability parameter $Q$) is easily established, in the high disc mass case we observe the development of an initial transient and subsequent settling down in a self-regulated state in some simulations, or a series or recurrent spiral episodes, with low azimuthal wave number $m$, in others. Accretion in this last case can therefore be a highly variable process. On the other hand, we find that the secular evolution of the disc is relatively slow. In fact, the time-average of the stress induced by self-gravity results in accretion time-scales much longer than the dynamical timescale, in contrast with previous isothermal simulations of massive accretion discs. We have also compared the resulting stress tensor with the expectations based on a local theory of transport, finding no significant evidence for global wave energy transport.



rate research

Read More

In this paper we examine the issue of characterising the transport associated with gravitational instabilities in relatively cold discs, discussing in particular the conditions under which it can be described within a local, viscous framework. We present the results of global, three-dimensional, SPH simulations of self-gravitating accretion discs, in which the disc is cooled using a simple parametrisation for the cooling function. Our simulations show that the disc settles in a ``self-regulated state, where the axisymmetric stability parameter $Qapprox 1$ and where transport and energy dissipation are dominated by self-gravity. We have computed the gravitational stress tensor and compared our results with expectations based on a local theory of transport. We find that, as long as the disc mass is smaller than $0.25M_{star}$ and the aspect ratio $H/Rlesssim 0.1$, transport is determined locally, thus allowing for a viscous treatment of the disc evolution.
I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific differences arising from such diversity in physical extent, all these systems share a common feature where a central object is fed from the accretion disc, due to the effect of turbulence and disc instabilities, which are able to remove the angular momentum from the gas and allow its accretion. In recent years, it has become increasingly apparent that the gravitational field produced by the disc itself (the discs self-gravity) is an important ingredient in the models, especially in the context of protostellar discs and of AGN discs. Indeed, it appears that in many cases (and especially in the colder outer parts of the disc) the development of gravitational instabilities can be one of the main agents in the redistribution of angular momentum. In some cases, the instability can be strong enough to lead to the formation of gravitationally bound clumps within the disc, and thus to determine the disc fragmentation. As a result, progress in our understanding of the dynamics of self-gravitating discs is essential to understand the processes that lead to the feeding of both young stars and of supermassive black holes in AGN. At the same time, understanding the fragmentation conditions is important to determine under which conditions AGN discs would fragment and form stars and whether protostellar discs might form giant gaseous planets through disc fragmentation.
120 - Ken Rice 2016
It is quite likely that self-gravity will play an important role in the evolution of accretion discs, in particular those around young stars, and those around supermassive black holes. We summarise, here, our current understanding of the evolution of such discs, focussing more on discs in young stellar system, than on discs in active galactic nuclei. We consider the conditions under which such discs may fragment to form bound objects, and when they might, instead, be expected to settle into a quasi-steady, self-regulated state. We also discuss how this understanding may depend on the mass of the disc relative to the mass of the central object, and how it might depend on the presence of external irradiation. Additionally, we consider whether or not fragmentation might be stochastic, where we might expect it to occur in an actual protostellar disc, and if there is any evidence for fragmentation actually playing a role in the formation of planetary-mass bodies. Although there are still a number of outstanding issue, such as the convergence of simulations of self-gravitating discs, whether or not there is more than one mode of fragmentation, and quite what role self-gravitating discs may play in the planet formation process, our general understanding of these systems seems quite robust.
Gas giant planets may form early-on during the evolution of protostellar discs, while these are relatively massive. We study how Jupiter-mass planet-seeds (termed protoplanets) evolve in massive, but gravitationally stable (Q>1.5), discs using radiative hydrodynamic simulations. We find that the protoplanet initially migrates inwards rapidly, until it opens up a gap in the disc. Thereafter, it either continues to migrate inwards on a much longer timescale or starts migrating outwards. Outward migration occurs when the protoplanet resides within a gap with gravitationally unstable edges, as a high fraction of the accreted gas is high angular momentum gas from outside the protoplanets orbit. The effect of radiative heating from the protoplanet is critical in determining the direction of the migration and the eccentricity of the protoplanet. Gap opening is facilitated by efficient cooling that may not be captured by the commonly used beta-cooling approximation. The protoplanet initially accretes at a high rate (1e-3Mj/yr), and its accretion luminosity could be a few tenths of the host stars luminosity, making the protoplanet easily observable (albeit only for a short time). Due to the high gas accretion rate, the protoplanet generally grows above the deuterium-burning mass-limit. Protoplanet radiative feedback reduces its mass growth so that its final mass is near the brown dwarf-planet boundary. The fate of a young planet-seed is diverse and could vary from a gas giant planet on a circular orbit at a few AU from the central star to a brown dwarf on an eccentric, wide orbit.
Large-scale, dust-trapping vortices may account for observations of asymmetric protoplanetary discs. Disc vortices are also potential sites for accelerated planetesimal formation by concentrating dust grains. However, in 3D discs vortices are subject to destructive `elliptic instabilities, which reduces their viability as dust traps. The survival of vortices in 3D accretion discs is thus an important issue to address. In this work, we perform shearing box simulations to show that disc self-gravity enhances the survival of 3D vortices, even when self-gravity is weak in the classic sense (e.g. with a Toomre $Qsimeq5$). We find a 3D, self-gravitating vortex can grow on secular timescales in spite of the elliptic instability. The vortex aspect-ratio decreases as it strengthens, which feeds the elliptic instability. The result is a 3D vortex with a turbulent core that persists for $sim 10^{3}$ orbits. We find when gravitational and hydrodynamic stresses become comparable, the vortex may undergo episodic bursts, which we interpret as interaction between elliptic and gravitational instabilities. We estimate the distribution of dust particles in self-gravitating, turbulent vortices. Our results suggest large-scale vortices in protoplanetary discs are more easily observed at large radii.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا