Do you want to publish a course? Click here

The stellar mass function of galaxies to z ~ 5 in the Fors Deep and GOODS-S fields

108   0   0.0 ( 0 )
 Added by Niv Drory
 Publication date 2004
  fields Physics
and research's language is English
 Authors N. Drory




Ask ChatGPT about the research

We present a measurement of the evolution of the stellar mass function (MF) of galaxies and the evolution of the total stellar mass density at 0<z<5. We use deep multicolor data in the Fors Deep Field (FDF; I-selected reaching I_AB=26.8) and the GOODS-S/CDFS region (K-selected reaching K_AB=25.4) to estimate stellar masses based on fits to composite stellar population models for 5557 and 3367 sources, respectively. The MF of objects from the GOODS-S sample is very similar to that of the FDF. Near-IR selected surveys hence detect the more massive objects of the same principal population as do I-selected surveys. We find that the most massive galaxies harbor the oldest stellar populations at all redshifts. At low z, our MF follows the local MF very well, extending the local MF down to 10^8 Msun. The faint end slope is consistent with the local value of alpha~1.1 at least up to z~1.5. Our MF also agrees very well with the MUNICS and K20 results at z<2. The MF seems to evolve in a regular way at least up to z~2 with the normalization decreasing by 50% to z=1 and by 70% to z=2. Objects having M>10^10 Msun which are the likely progenitors of todays L* galaxies are found in much smaller numbers above z=2. However, we note that massive galaxies with M>10^11 Msun are present even to the largest redshift we probe. Beyond z=2 the evolution of the mass function becomes more rapid. We find that the total stellar mass density at z=1 is 50% of the local value. At z=2, 25% of the local mass density is assembled, and at z=3 and z=5 we find that at least 15% and 5% of the mass in stars is in place, respectively. The number density of galaxies with M>10^11 Msun evolves very similarly to the evolution at lower masses. It decreases by 0.4 dex to z=1, by 0.6 dex to z=2, and by 1 dex to z=4.



rate research

Read More

99 - M. Pannella 2006
We study the evolution of the stellar mass density for the separate families of bulge-dominated and disk-dominated galaxies over the redshift range 0.25 < z < 1.15. We derive quantitative morphology for a statistically significant galaxy sample of 1645 objects selected from the FORS Deep and the GOODS-S Fields. We find that the morphological mix evolves monotonically with time: the higher the redshift, the more disk systems dominate the total mass content. At redshift about 1, massive objects (M_stellar > 7E10 M_solar) host about half of the mass contained in objects of similar mass in the local universe. The contribution from early and late type galaxies to the mass budget at z about 1 is nearly equal. We show that in situ star formation is not sufficient to explain the changing mass budget. Moreover we find that the star formation rate per unit stellar mass of massive galaxies increases with redshift only for the intermediate and early morphological types, while it stays nearly constant for late-type objects. This suggests that merging and/or frequent accretion of small mass objects has a key role in the shaping of the Hubble sequence as we observe it now, and also in decreasing the star formation activity of the bulge-dominated descendants of massive disk galaxies.
We explore the build-up of stellar mass in galaxies over a wide redshift range 0.4 < z < 5.0 by studying the evolution of the specific star formation rate (SSFR), defined as the star formation rate per unit stellar mass, as a function of stellar mass and age. Our work is based on a combined sample of ~ 9000 galaxies from the FORS Deep Field and the GOODS-S field, providing high statistical accuracy and relative insensitivity against cosmic variance. As at lower redshifts, we find that lower-mass galaxies show higher SSFRs than higher mass galaxies, although highly obscured galaxies remain undetected in our sample. Furthermore, the highest mass galaxies contain the oldest stellar populations at all redshifts, in principle agreement with the existence of evolved, massive galaxies at 1 < z < 3. It is remarkable, however, that this trend continues to very high redshifts of z ~ 4. We also show that with increasing redshift the SSFR for massive galaxies increases by a factor of ~ 10, reaching the era of their formation at z ~ 2 and beyond. These findings can be interpreted as evidence for an early epoch of star formation in the most massive galaxies, and ongoing star-formation activity in lower mass galaxies.
74 - A. Gabasch 2004
We measure the star formation rate (SFR) as a function of redshift z up to z ~4.5, based on B, I and (I+B) selected galaxy catalogues from the FORS Deep Field (FDF) and the K-selected catalogue from the GOODS-South field. Distances are computed from spectroscopically calibrated photometric redshifts accurate to (Delta_z / (z_spec+1)) ~0.03 for the FDF and ~0.056 for the GOODS-South field. The SFRs are derived from the luminosities at 1500 Angstroem. We find that the total SFR estimates derived from B, I and I+B catalogues agree very well ($lsim 0.1$ dex) while the SFR from the K catalogue is lower by ~0.2 dex. We show that the latter is solely due to the lower star-forming activity of K-selected intermediate and low luminosity (L<L_*) galaxies. The SFR of bright (L>L_*) galaxies is independent of the selection band, i.e. the same for B, I, (I+B), and K-selected galaxy samples. At all redshifts, luminous galaxies (L>L_*) contribute only ~1/3 to the total SFR. There is no evidence for significant cosmic variance between the SFRs in the FDF and GOODs-South field, ~0.1 dex, consistent with theoretical expectations. The SFRs derived here are in excellent agreement with previous measurements provided we assume the same faint-end slope of the luminosity function as previous works (alpha ~ -1.6). However, our deep FDF data indicate a shallower slope of alpha=-1.07, implying a SFR lower by ~0.3 dex. We find the SFR to be roughly constant up to z ~4 and then to decline slowly beyond, if dust extinctions are assumed to be constant with redshift.
We have analysed a sample of 1292 4.5 micron-selected galaxies at z>=3, over 0.6 square degrees of the UKIRT Infrared Deep Survey (UKIDSS) Ultra Deep Survey (UDS). Using photometry from the U band through 4.5 microns, we have obtained photometric redshifts and derived stellar masses for our sources. Only two of our galaxies potentially lie at z>5. We have studied the galaxy stellar mass function at 3<=z<5, based on the 1213 galaxies in our catalogue with [4.5]<= 24.0. We find that: i) the number density of M > 10^11 Msun galaxies increased by a factor > 10 between z=5 and 3, indicating that the assembly rate of these galaxies proceeded > 20 times faster at these redshifts than at 0<z<2; ii) the Schechter function slope alpha is significantly steeper than that displayed by the local stellar mass function, which is both a consequence of the steeper faint end and the absence of a pure exponential decline at the high-mass end; iii) the evolution of the comoving stellar mass density from z=0 to 5 can be modelled as log10 (rho_M) =-(0.05 +/- 0.09) z^2 - (0.22 -/+ 0.32) z + 8.69. At 3<=z<4, more than 30% of the M > 10^11 Msun galaxies would be missed by optical surveys with R<27 or z<26. Thus, our study demonstrates the importance of deep mid-IR surveys over large areas to perform a complete census of massive galaxies at high z and trace the early stages of massive galaxy assembly.
The galaxy stellar mass function (GSMF) at high-z provides key information on star-formation history and mass assembly in the young Universe. We aimed to use the unique combination of deep optical/NIR/MIR imaging provided by HST, Spitzer and the VLT in the CANDELS-UDS, GOODS-South, and HUDF fields to determine the GSMF over the redshift range 3.5<z<7.5. We utilised the HST WFC3/IR NIR imaging from CANDELS and HUDF09, reaching H~27-28.5 over a total area of 369 arcmin2, in combination with associated deep HST ACS optical data, deep Spitzer IRAC imaging from the SEDS programme, and deep Y and K-band VLT Hawk-I images from the HUGS programme, to select a galaxy sample with high-quality photometric redshifts. These have been calibrated with more than 150 spectroscopic redshifts in the range 3.5<z<7.5, resulting in an overall precision of sigma_z/(1+z)~0.037. We have determined the low-mass end of the high-z GSMF with unprecedented precision, reaching down to masses as low as M*~10^9 Msun at z=4 and ~6x10^9 Msun at z=7. We find that the GSMF at 3.5<z<7.5 depends only slightly on the recipes adopted to measure the stellar masses, namely the photo-z, the SFHs, the nebular contribution or the presence of AGN on the parent sample. The low-mass end of the GSMF is steeper than has been found at lower redshifts, but appears to be unchanged over the redshift range probed here. Our results are very different from previous GSMF estimates based on converting UV galaxy luminosity functions into mass functions via tight M/L relations. Integrating our evolving GSMF over mass, we find that the growth of stellar mass density is barely consistent with the time-integral of the SFR density over cosmic time at z>4. These results confirm the unique synergy of the CANDELS+HUDF, HUGS, and SEDS surveys for the discovery and study of moderate/low-mass galaxies at high redshifts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا