Searching for the Missing Baryons in the Warm-hot Intergalactic Medium


Abstract in English

We discuss physical properties and the baryonic content of the Warm-hot Intergalactic Medium (WHIM) at low redshifts. Cosmological simulations predict that the WHIM contains a large fraction of the baryons at z=0 in the form of highly-ionized gas at temperatures between 10^5 and 10^7 K. Using high-resolution ultraviolet spectra obtained with the Space Telescope Imaging Spectrograph (STIS) and the Far Ultraviolet Spectroscopic Explorer (FUSE) we have studied the WHIM at low redshifts by searching for intervening OVI and thermally broadened Lyman alpha (BL) absorption toward a number of quasars and active galactic nuclei (AGNs). Our measurements imply cosmological mass densities of Omega_b(OVI)~0.0027/h_75 and Omega_b(BL)~0.0058/h_75. Our results suggest that the WHIM at low z contains more baryonic mass than stars and gas in galaxies.

Download