Do you want to publish a course? Click here

PSR J1756-2251: a new relativistic double neutron star system

49   0   0.0 ( 0 )
 Added by Andrew Faulkner
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery during the Parkes Multibeam Pulsar Survey of PSR J1756-2251, a 28.5 ms pulsar in a relativistic binary system. Subsequent timing observations showed the pulsar to have an orbital period of 7.67 hrs and an eccentricity of 0.18. They also revealed a significant advance of periastron, 2.585+/-0.002 deg./yr. Assuming this is entirely due to general relativity implies a total system mass (pulsar plus companion) of 2.574+/-0.003 solar mass. This mass and the significant orbital eccentricity suggest that this is a double neutron star system. Measurement of the gravitational redshift, gamma, and an evaluation of the Shapiro delay shape, s, indicate a low companion mass of <1.25 solar mass. The expected coalescence time due to emission of gravitational waves is only ~1.7 Gyr substantially less than a Hubble time. We note an apparent correlation between spin period and eccentricity for normally evolving double neutron star systems.



rate research

Read More

The pulsar PSR J1756$-$2251 resides in a relativistic double neutron star (DNS) binary system with a 7.67-hr orbit. We have conducted long-term precision timing on more than 9 years of data acquired from five telescopes, measuring five post-Keplerian parameters. This has led to several independent tests of general relativity (GR), the most constraining of which shows agreement with the prediction of GR at the 4% level. Our measurement of the orbital decay rate disagrees with that predicted by GR, likely due to systematic observational biases. We have derived the pulsar distance from parallax and orbital decay measurements to be 0.73$_{-0.24}^{+0.60}$ kpc (68%) and < 1.2 kpc (95% upper limit), respectively; these are significantly discrepant from the distance estimated using Galactic electron density models. We have found the pulsar mass to be 1.341$pm$0.007 M$_odot$, and a low neutron star (NS) companion mass of 1.230$pm$0.007 M$_odot$. We also determined an upper limit to the spin-orbit misalignment angle of 34{deg} (95%) based on a system geometry fit to long-term profile width measurements. These and other observed properties have led us to hypothesize an evolution involving a low mass loss, symmetric supernova progenitor to the second-formed NS companion, as is thought to be the case for the double pulsar system PSR J0737$-$3039A/B. This would make PSR J1756$-$2251 the second compact binary system providing concrete evidence for this type of NS formation channel.
106 - R. P. Mignani 2012
PSR J1811-1736 (P=104 ms) is an old (~1.89 Gyrs) binary pulsar (P_orb=18.8 d) in a highly eccentric orbit (e=0.828) with an unidentified companion. Interestingly enough, the pulsar timing solution yields an estimated companion mass 0.93 M_{odot}<M_C<1.5 M_{odot}, compatible with that of a neutron star. As such, it is possible that PSR J1811-1736 is a double neutron star (DNS) system, one of the very few discovered so far. This scenario can be investigated through deep optical/infrared (IR) observations. We used J, H, K-band images, obtained as part of the UK Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS), and available in the recent Data Release 9 Plus, to search for its undetected companion of the PSR J1811-1736 binary pulsar. We detected a possible companion star to PSR J1811-1736 within the 3 sigma radio position uncertainty (1.32 arcsec), with magnitudes J=18.61+/-0.07, H=16.65+/-0.03, and K=15.46+/-0.02. The star colours are consistent with either a main sequence (MS) star close to the turn-off or a lower red giant branch (RGB) star, at a pulsar distance of ~5.5 kpc and with a reddening of E(B-V)~4.9. The star mass and radius would be compatible with the constraints on the masses and orbital inclination of the binary system inferred from the mass function and the lack of radio eclipses near superior conjunction. Thus, it is possible that it is the companion to PSR J1811-1736. However, based on the star density in the field, we estimated a quite large chance coincidence probability of ~0.27 between the pulsar and the star, which makes the association unlikely. No other star is detected within the 3 sigma pulsar radio position down to J~20.5, H~19.4$ and K~18.6, which would allow us to rule out a MS companion star earlier than a mid-to-late M spectral type.
We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946$+$2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946$+$2052 is a 17-ms pulsar in a 1.88-hour, eccentric ($e , =, 0.06$) orbit with a $gtrsim 1.2 , M_odot$ companion. We have used the Jansky Very Large Array to localize PSR J1946$+$2052 to a precision of 0.09 arcseconds using a new phase binning mode. We have searched multiwavelength catalogs for coincident sources but did not find any counterparts. The improved position enabled a measurement of the spin period derivative of the pulsar ($dot{P} , = , 9,pm , 2 ,times 10^{-19}$); the small inferred magnetic field strength at the surface ($B_S , = , 4 , times , 10^9 , rm G$) indicates that this pulsar has been recycled. This and the orbital eccentricity lead to the conclusion that PSR J1946$+$2052 is in a DNS system. Among all known radio pulsars in DNS systems, PSR J1946$+$2052 has the shortest orbital period and the shortest estimated merger timescale, 46 Myr; at that time it will display the largest spin effects on gravitational wave waveforms of any such system discovered to date. We have measured the advance of periastron passage for this system, $dot{omega} , = , 25.6 , pm , 0.3, deg rm yr^{-1}$, implying a total system mass of only 2.50 $pm$ 0.04 $M_odot$, so it is among the lowest mass DNS systems. This total mass measurement combined with the minimum companion mass constrains the pulsar mass to $lesssim 1.3 , M_odot$.
We present upper limits on the X-ray emission for three neutron stars. For PSR J1840$-$1419, with a characteristic age of 16.5 Myr, we calculate a blackbody temperature upper limit (at 99% confidence) of $kT_{mathrm{bb}}^{infty}<24^{+17}_{-10}$ eV, making this one of the coolest neutron stars known. PSRs J1814$-$1744 and J1847$-$0130 are both high magnetic field pulsars, with inferred surface dipole magnetic field strengths of $5.5times10^{13}$ and $9.4times10^{13}$ G, respectively. Our temperature upper limits for these stars are $kT_{mathrm{bb}}^{infty}<123^{+20}_{-33}$ eV and $kT_{mathrm{bb}}^{infty}<115^{+16}_{-33}$ eV, showing that these high magnetic field pulsars are not significantly hotter than those with lower magnetic fields. Finally, we put these limits into context by summarizing all temperature measurements and limits for rotation-driven neutron stars.
To understand the nature of supernovae and neutron star (NS) formation, as well as binary stellar evolution and their interactions, it is important to probe the distribution of NS masses. Until now, all double NS (DNS) systems have been measured to have a mass ratio close to unity (q $geq$ 0.91). Here we report the measurement of the individual masses of the 4.07-day binary pulsar J0453+1559 from measurements of the rate of advance of periastron and Shapiro delay: The mass of the pulsar is 1.559(5) $M_{odot}$ and that of its companion is 1.174(4) $M_{odot}$; q = 0.75. If this companion is also a neutron star (NS), as indicated by the orbital eccentricity of the system (e=0.11), then its mass is the smallest precisely measured for any such object. The pulsar has a spin period of 45.7 ms and a spin derivative of 1.8616(7) x$10^-19$; from these we derive a characteristic age of ~ 4.1 x $10^9$ years and a magnetic field of ~ 2.9 x $10^9$ G,i.e, this pulsar was mildly recycled by accretion of matter from the progenitor of the companion star. This suggests that it was formed with (very approximately) its current mass. Thus NSs form with a wide range of masses, which is important for understanding their formation in supernovae. It is also important for the search for gravitational waves released during a NS-NS merger: it is now evident that we should not assume all DNS systems are symmetric.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا