Do you want to publish a course? Click here

Far-IR Detection Limits I: Sky Confusion Due to Galactic Cirrus

58   0   0.0 ( 0 )
 Added by Woong-Seob Jeong
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fluctuations in the brightness of the background radiation can lead to confusion with real point sources. Such background emission confusion will be important for infrared observations with relatively large beam sizes since the amount of fluctuation tends to increase with angular scale. In order to quantitively assess the effect of the background emission on the detection of point sources for current and future far-infrared observations by space-borne missions such as Spitzer, ASTRO-F, Herschel and SPICA, we have extended the Galactic emission map to higher angular resolution than the currently available data. Using this high resolution map, we estimate the sky confusion noise due to the emission from interstellar dust clouds or cirrus, based on fluctuation analysis and detailed photometry over realistically simulated images. We find that the confusion noise derived by simple fluctuation analysis agrees well with the result from realistic simulations. Although the sky confusion noise becomes dominant in long wavelength bands (> 100 um) with 60 - 90cm aperture missions, it is expected to be two order of magnitude smaller for the next generation space missions with larger aperture sizes such as Herschel and SPICA.



rate research

Read More

We present a comprehensive analysis for the determination of the confusion levels for the current and the next generation of far-infrared surveys assuming three different cosmological evolutionary scenarios. We include an extensive model for diffuse emission from infrared cirrus in order to derive absolute sensitivity levels taking into account the source confusion noise due to point sources, the sky confusion noise due to the diffuse emission, and instrumental noise. We use our derived sensitivities to suggest best survey strategies for the current and the future far-infrared space missions Spitzer, AKARI (ASTRO-F), Herschel, and SPICA. We discuss whether the theoretical estimates are realistic and the competing necessities of reliability and completeness. We find the best estimator for the representation of the source confusion and produce predictions for the source confusion using far-infrared source count models. From these confusion limits considering both source and sky confusions, we obtain the optimal, confusion limited redshift distribution for each mission. Finally, we predict the Cosmic Far-Infrared Background (CFIRB) which includes information about the number and distribution of the contributing sources.
We present detailed predictions for the confusion noise due to extragalactic sources in the far-IR/(sub)-millimeter channels of ESA/ISO, NASA/Spitzer, ESA/Herschel and ESA/Planck satellites, including the contribution from clustering of unresolved SCUBA galaxies. Clustering is found to increase the confusion noise, compared to the case of purely Poisson fluctuations, by 10-15% for the lowest frequency (i.e. lowest angular resolution) Spitzer and Herschel channels, by 25-35% for the 175 micron ISOPHOT channel, and to dominate in the case of Planck/HFI channels at nu>143GHz. Although our calculations make use of a specific evolutionary model (Granato et al. 2004), the results are strongly constrained by the observed counts and by data on the redshift distribution of SCUBA sources, and therefore are not expected to be heavily model dependent. The main uncertainty arises from the poor observational definition of the source clustering properties. Two models have been used for the latter: a power-law with constant slope and a redshift-independent comoving correlation length,r_0, and the standard theoretical model for clustering evolution in a LambdaCDM universe, with a redshift-dependent bias factor. In both cases, the clustering amplitude has been normalized to yield a unit angular correlation function at theta_0=1-2 arcsec for 850 micron sources fainter than 2 mJy, consistent with the results by Peacock et al. (2000). This normalization yields, for the first model, r_0=8.3$ Mpc/h, and, for the second model, an effective mass of dark matter haloes in which these sources reside of M_halo=1.8*10^{13} M_sun/h. These results are consistent with independent estimates for SCUBA galaxies and for other, likely related, sources.
The physical properties of galactic cirrus emission are not well characterized. BOOMERanG is a balloon-borne experiment designed to study the cosmic microwave background at high angular resolution in the millimeter range. The BOOMERanG 245 and 345GHz channels are sensitive to interstellar signals, in a spectral range intermediate between FIR and microwave frequencies. We look for physical characteristics of cirrus structures in a region at high galactic latitudes (b~-40{deg}) where BOOMERanG performed its deepest integration, combining the BOOMERanG data with other available datasets at different wavelengths. We have detected eight emission patches in the 345 GHz map, consistent with cirrus dust in the Infrared Astronomical Satellite maps. The analysis technique we have developed allows to identify the location and the shape of cirrus clouds, and to extract the flux from observations with different instruments at different wavelengths and angular resolutions. We study the integrated flux emitted from these cirrus clouds using data from Infrared Astronomical Satellite (IRAS), DIRBE, BOOMERanG and Wilkinson Microwave Anisotropy Probe (WMAP) in the frequency range 23-3000 GHz (13 mm 100 micron wavelength). We fit the measured spectral energy distributions with a combination of a grey body and a power-law spectra considering two models for the thermal emission. The temperature of the thermal dust component varies in the 7 - 20 K range and its emissivity spectral index is in the 1 - 5 range. We identified a physical relation between temperature and spectral index as had been proposed in previous works. This technique can be proficiently used for the forthcoming Planck and Herschel missions data.
In this paper, we report on a first estimate of the contribution of galaxies to the diffuse extragalactic background from the far-UV to the submm, based on semi--analytic models of galaxy formation and evolution. We conclude that the global multi--wavelength picture seems to be consistent provided a quite important fraction of star--formation be hidden in dust--enshrouded systems at intermediate and high--redshift. We show that, according to such models, galaxies cannot stand as important contributors to the background hydrogen-ionizing flux at high-redshift unless neutral hydrogen absorption sites are clumpy and uncorrelated with star forming regions.We briefly discuss the robustness of such a result.
We combine wide and deep galaxy number-count data from GAMA, COSMOS/G10, HST ERS, HST UVUDF and various near-, mid- and far- IR datasets from ESO, Spitzer and Herschel. The combined data range from the far-UV (0.15microns) to far-IR (500microns), and in all cases the contribution to the integrated galaxy light (IGL) of successively fainter galaxies converges. Using a simple spline fit, we derive the IGL and the extrapolated-IGL in all bands. We argue undetected low surface brightness galaxies and intra-cluster/group light is modest, and that our extrapolated-IGL measurements are an accurate representation of the extra-galactic background light. Our data agree with most earlier IGL estimates and with direct measurements in the far-IR, but disagree strongly with direct estimates in the optical. Close agreement between our results and recent very high-energy experiments (H.E.S.S. and MAGIC), suggest that there may be an additional foreground affecting the direct estimates. The most likely culprit could be the adopted Zodiacal light model. Finally we use a modified version of the two-component model to integrate the EBL and obtain measurements of the Cosmic Optical Background (COB) and Cosmic Infrared Background (CIB) of: $24^{+4}_{-4}$nWm$^{-2}$sr$^{-1}$ and $26^{+5}_{-5}$nWm$^{-2}$sr$^{-1}$ respectively (48:52%). Over the next decade, upcoming space missions such as Euclid and WFIRST, have the capacity to reduce the COB error to $<1%$, at which point comparisons to the very high energy data could have the potential to provide a direct detection and measurement of the reionisation field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا