No Arabic abstract
PG1159 stars are hot hydrogen-deficient post-AGB stars with effective temperatures within a range from 75000 K up to 200000 K. These stars are probably the result of a late helium-shell flash that had occurred during their first descent from the AGB. The lack of hydrogen is caused by flash-induced envelope mixing and burning of H in deeper regions. Now the former intershell matter is seen on the surface of the stars. Hence the stellar atmospheres show metal abundances drastically different from the solar values. Our sample comprises ten PG1159 stars with effective temperatures between 85000 K and 170000 K. We present first results of our spectral analysis based on FUV spectra obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE).
PG1159-035 is the prototype of the PG1159 spectral class which consists of extremely hot hydrogen-deficient (pre-) white dwarfs. It is also the prototype of the GW Vir variables, which are non-radial g-mode pulsators. The study of PG1159 stars reveals insight into stellar evolution and nucleosynthesis during AGB and post-AGB phases. We perform a quantitative spectral analysis of PG1159-035 focusing on the abundance determination of trace elements. We have taken high-resolution ultraviolet spectra of PG1159-035 with the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer. They are analysed with non-LTE line blanketed model atmospheres. We confirm the high effective temperature with high precision (Teff=140,000+/-5000 K) and the surface gravity of logg=7. For the first time we assess the abundances of silicon, phosphorus, sulfur, and iron. Silicon is about solar. For phosphorus we find an upper limit of solar abundance. A surprisingly strong depletion of sulfur (2% solar) is discovered. Iron is not detected, suggesting an upper limit of 30% solar. This coincides with the Fe deficiency found in other PG1159 stars. We redetermine the nitrogen abundance and find it to be lower by one dex compared to previous analyses. The sulfur depletion is in contradiction with current models of AGB star intershell nucleosynthesis. The iron deficiency confirms similar results for other PG1159 stars and is explained by the conversion of iron into heavier elements by n-capture in the s-processing environment of the precursor AGB star. However, the extent of the iron depletion is stronger than predicted by evolutionary models. The relatively low nitrogen abundance compared to other pulsating PG1159 stars weakens the role of nitrogen as a distinctive feature of pulsators and non-pulsators in the GW Vir instability strip.
The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric elemental abundances of these stars allow to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted elemental abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. PG1159 stars appear to be the direct progeny of [WC] stars.
High-resolution UV spectra, obtained with HST and FUSE, enable us to analyse hot hydrogen-rich central stars in detail. Up to now, optical hydrogen and helium lines have been used to derive temperature and surface gravity. Those lines, however, are rather insensitive; in particular, neutral helium lines have completely vanished in the hottest central stars. Therefore, we have concentrated on ionization balances of metals, which have a rich line spectrum in the UV, to establish a new temperature scale for our sample. Furthermore, we have determined abundances of light metals, which had been poorly known before. They show considerable variation from star to star. We present results of quantitative spectral analyses performed with non-LTE model atmospheres.
PG1159 stars are hot, hydrogen-deficient (pre-) white dwarfs with atmospheres mainly composed of helium, carbon, and oxygen. The unusual surface chemistry is the result of a late helium-shell flash. Observed element abundances enable us to test stellar evolution models quantitatively with respect to their nucleosynthesis products formed near the helium-burning shell of the progenitor asymptotic giant branch stars. Because of the high effective temperatures (Teff), abundance determinations require ultraviolet spectroscopy and non-local thermodynamic equilibrium model atmosphere analyses. Up to now, we have presented results for the prototype of this spectral class and two cooler members (Teff in the range 85,000-140,000 K). Here we report on the results for two even hotter stars (PG1520+525 and PG1144+005, both with Teff = 150,000 K) which are the only two objects in this temperature-gravity region for which useful far-ultraviolet spectra are available, and revisit the prototype star. Previous results on the abundances of some species are confirmed, while results on others (Si, P, S) are revised. In particular, a solar abundance of sulphur is measured in contrast to earlier claims of a strong S deficiency that contradicted stellar evolution models. For the first time, we assess the abundances of Na, Al, and Cl with newly constructed non-LTE model atoms. Besides the main constituents (He, C, O), we determine the abundances (or upper limits) of N, F, Ne, Na, Al, Si, P, S, Cl, Ar, and Fe. Generally, good agreement with stellar models is found.
We present Far Ultraviolet Spectroscopic Explorer (FUSE) observations of the sightline toward the Seyfert 1 galaxy Markarian 876, which passes through high velocity cloud (HVC) complex C. This sight line demonstrates the ability of FUSE to measure ionic absorption lines in Galactic HVCs. High velocity absorption is clearly seen in both members of the O VI doublet. This is the first detection of O VI in a neutral hydrogen HVC. One component of HVC complex C is resolved in multiple Fe II lines from which we derive N(Fe II)/N(H I)=0.48 (Fe/H)_solar. This value of N(Fe II)/N(H I) implies that the metallicity of complex C along this sightline may be higher than that along the Mrk 290 sightline (0.1 solar) found by Wakker et al. (1999). On the other hand, if the metallicity of complex C is also 0.1 solar along this line of sight, the observed value of N(Fe II)/(N(H I) suggests there may be a significan t amount of H+ along the line of sight. In any case, little, if any, iron can be depleted into dust grains if the intrinsic metallicity of complex C is subsolar. Absorption from complex C is also seen in C II, N I, and N II, and upper limits based on non-detections can be determined for Ar I, P II, and Fe III. Although molecular hydrogen in the Milky Way is obvious in the FUSE data, no H_2 absorption is seen in the high velocity cloud to a limit N(H_2)<2.0x10^14 cm^-2. Future FUSE observations of extragalactic objects behind Galactic high velocity clouds will allow us to better constrain models of HVC origins.